Optical Dyakonov surface waves at magnetic interfaces

Lucian-Cornel Crasovan,* David Artigas, Dumitru Mihalache, and Lluis Torner
ICFO-Institut de Ciencies Fotoniques and Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Received April 1, 2005; revised manuscript received July 20, 2005; accepted August 8, 2005

We address the existence and properties of lossless surface waves that form at interfaces between magnetic and birefringent media. We show that the angular domain of existence of Dyakonov surface waves for magnetic interfaces is significantly larger than that for nonmagnetic ones. Our results have important implications for the experimental generation of surface waves and for their potential applications based on guided-to-leaky transitions. © 2005 Optical Society of America

OCIS codes: 240.6690, 310.2790.

Optical surface waves, i.e., light wave packets localized at the interface between two media with different properties, are a topic of continually increasing interest because of their fundamental properties as well as potential applications, e.g., in sensing, trapping, and imaging, based on near-field techniques. Research has been focused mostly on surface waves and resonances that form at metal–dielectric interfaces, so-called surface plasmons,1 and more recently and resonances that form at metal–dielectric interfaces is significantly larger than that for nonmagnetic ones. Our results have important implications for the experimental generation of surface waves and for their potential applications based on guided-to-leaky transitions.

We consider a planar geometry with isotropic cladding on top of a birefringent material with the interface plane at z = 0. The surface wave propagates in the x direction, with evanescent fields exhibiting exponential z decay in both the cladding and the substrate. Let \( n_{r,os,es} \) be the relative permittivities that correspond to the cladding and the O and E waves in the materials. \( \mu_{r,os,es} \) are the corresponding relative permeabilities. Then the refractive indices are \( n_r = n_{r,os} \) and \( n_{r,os,es} = n_{es,es} \mu_r \). Equal permeabilities for the O and E waves in the birefringent medium are assumed. Here we consider only uniaxial birefringent substrates with the optical axis parallel to the \((x,y)\) plane at an angle \( \theta \) with respect to propagation direction \( x \). Let \( k_0 \) be the vacuum wave number and \( N \) be the effective index of the guiding surface mode. Starting from the wave equation in a birefringent medium,

\[
\nabla^2 \mathbf{E} + k_0^2 \varepsilon \mathbf{E} = -\nabla \cdot (\varepsilon \mathbf{E}),
\]

where \( \mathbf{E}(x,z) = (E_x, E_y, E_z)^T \) is the electric field and \( \varepsilon \) is the permittivity tensor whose nonvanishing elements are

\[
\varepsilon_{xx} = n_{os,xx}^2 \sin^2 \theta + n_{es,xx}^2 \cos^2 \theta,
\]

\[
\varepsilon_{yy} = n_{os,yy}^2 \sin^2 \theta + n_{es,yy}^2 \cos^2 \theta,
\]

\[
\varepsilon_{zz} = n_{os,zz}^2 - n_{es,zz}^2 \sin^2 \theta + n_{es,zz}^2 \cos^2 \theta,
\]

\[
\varepsilon_{xy} = \varepsilon_{yx} = n_{os,xx} n_{es,yy} \sin \theta \cos \theta.
\]

We have obtained the electromagnetic decaying eigenmodes of the homogeneous magnetic cladding and of the birefringent substrate. By applying boundary conditions at the cladding and the substrate, we obtained the eigenvalue equation of the surface guided modes as

\[
n_{es}^2 A_x B_y \sin^2 \theta - n_{os}^2 A_y B_x \cos^2 \theta = 0,
\]

where \( A_{os,es} = n_{os,es} \mu_r + \mu_r \), \( B_{os,es} = n_{os,es}^2 \gamma_{os} / \mu_r + n_{es,es}^2 \gamma_e / \mu_r \), and

\[
B_{es} = n_{es,es}^2 \gamma_{os} / \mu_r + n_{os,es}^2 \gamma_e / (\mu_r \gamma_{os}), \quad \gamma_e = (N^2 - \varepsilon_{xx})^{-1},
\]

\[
\gamma_{os} = N^2 - \varepsilon_{es,es},
\]

\[
\gamma_{es} = n_{es,es}^2 [N^2 - n_{es,es}^2 (\sin^2 \theta + \cos^2 \theta)] / n_{os,es}^2 (\theta),
\]

and

\[
n_{os,es}^2 (\theta) = n_{os,es}^2 n_{es,es}^2 / (n_{os,es}^2 \sin^2 \theta + n_{es,es}^2 \cos^2 \theta).
\]

An inspection of eigenvalue equation (1) reveals that for fixed refractive indices its solutions depend on the ratio of the relative magnetic permeabilities \( r = \mu_e / \mu_r \) and not on \( \mu_r \) and \( \mu_e \), independently. This means, in particular, that one gets the same solutions for an interface that separates two right-handed materials as for one that separates two left-handed ma-

© 2005 Optical Society of America

0146-9592/05/223075-3/$15.00
considered, there exist optimal values of $n_c$ that ensure maximal $\Delta \theta$, while $\Delta \theta$ decreases when $n_c$ approaches cutoff value $n_{os}$ or $n_{es}(\theta)$. This figure also shows that the higher $r$ is (i.e., the higher parameter $\mu_c$ is), the higher the optimal $n_c$. The $\Delta \theta$ increment in terms of $r$ can also be observed in Fig. 2(b). Here $n_c$ is kept constant and equal to three representative values and $r$ is varied by use of the same substrate as above. For all the cases that we have considered here, a monotonic increase of $\Delta \theta$ with $r$ is observed. This enhancement is proportional to the initial $\Delta \theta$ in a nonmagnetic case. To check this point, we calculated the existence domain for an interface between a photonic crystal substrate and a magnetic cladding. This arrangement, operating in the homogenized limit, could, depending on its geometry, exhibit a large birefringence, up to $\Delta n=0.6$ ($n_{os}=1.35$ and $n_{es}=1.92$). The existence domain with $n_c=1.55$ in the case of a nonmagnetic cladding ($r=1$) is $\Delta \theta=5^\circ$. This value was almost doubled $\Delta \theta=9.7^\circ$, for a magnetic cladding with $r=5$, a result that is in accordance with those shown in Fig. 2(b) for the rutile case.

A parameter that characterizes the localization of the surface wave is the so-called penetration depth, defined as $\Gamma_c=\lambda/(2\pi n_c)$, with $x=c,Es$. As Fig. 3 shows, penetration depths of the order of $\lambda$ are achieved near the center of $\Delta \theta$, while the wave becomes increasingly more delocalized as one approaches cutoff angles $\theta_1$ and $\theta_2$. The figure also shows how the $\Delta \theta$ increment with $r$ affects $\Gamma_c$. In particular, it can be seen that, for a fixed value of $\theta$, the penetration depth in the birefringent crystal decreases with $r$, in this way increasing the range of angles at which Dyakonov waves are localized near the interface.

In what follows, we consider the properties of the Dyakonov waves extended to sandwichlike structures that contain an isotropic nanolayer as a film between the birefringent substrate and the cladding. Because of the presence of the Dyakonov resonances, such structures support guided waves for film thicknesses well below the usual waveguide cutoff. This results in an enhancement of the angular domain of existence for guided waves compared with that for surface waves. We found that, for certain parameters, a significant enhancement of the existence domain is afforded by the nanolayer when the cladding is a magnetic material. We present a comparison of the

Fig. 1. Detail from the existence domain in the $(n_c, \theta)$ parameter plane for a rutile substrate ($n_{os}=2.583$, $n_{es}=2.865$), for nonmagnetic cladding (darker shaded region), and for magnetic cladding with $r=2$ (darker and lighter shaded regions). For completeness, the inset shows the whole existence domain for the magnetic case.

Fig. 2. (a) Angular existence window $\Delta \theta$ versus $n_c$ for three representative values of $r$, (b) $\Delta \theta$ versus $r$ for three representative values of $n_c$. For both figures the substrate was rutile.

Fig. 3. Cladding and substrate penetration depths $\Gamma_c,Es$ versus orientation angle $\theta$ for a few representative relative permeabilities $r$. Here $n_c=1.55$, $n_{os}=1.35$, and $n_{es}=1.92$ (the substrate is a photonic crystal).
magnetic and nonmagnetic cladding cases in Figs. 4(a) and 4(b) for a quartz crystal substrate ($n_{os} = 1.547$ and $n_{es} = 1.556$) and a film with $n_c = 1.57$. One gets, for a cladding with a moderate permeability ($r = 2$), angular existence domains for Dyakonov-type guided waves that are more than two times larger than those that correspond to nonmagnetic claddings.

Our analysis also indicates that Dyakonov-type guided waves are supported by magnetic ultrathin films between a nonmagnetic isotropic cladding and a nonmagnetic birefringent substrate. Contrary to the previous case, for moderate values of film permeability the existence domain is smaller than that which corresponds to the Dyakonov-type guided waves that form for a nonmagnetic film [see, e.g., Figs. 4(c) and 4(d)]. However, from the point of view of potential applications, the last structure could be interesting for probing the properties of ultrathin films of magnetic materials deposited on top of a substrate, acting as biological or chemical sensors based on guided-to-leaky transitions.

It is worth noting that for both sandwich-type geometries that we analyzed here (magnetic cladding–nonmagnetic film and nonmagnetic cladding–magnetic film), we have shown in Fig. 4 only the existence regions that correspond to the single-mode regime. Smaller values of $n_c$ allow for simultaneous propagation of two guided modes, one of them of a Dyakonov type, that is, a TE-dominant mode, whereas the other mode is a TM-dominant one that branches from the pure TM mode that exists at $\theta = 0$. Moreover, because of the presence of the ultrathin film, the Dyakonov-type guided waves can exist for conditions outside the limit $n_{os} < n_c < n_{es}$. In particular, they can exist even in the absence of a material cladding, i.e., for an air–ultrathin magnetic film–birefringent substrate geometry. The importance of this result in view of potential applications of the surface waves to interrogate properties of nanolayers is clearly apparent.

In summary, we have shown that interfaces between a birefringent substrate and a magnetic cladding exhibit favorable conditions for the formation of Dyakonov surface waves. We found that the angular existence domain of these waves is enhanced compared with nonmagnetic interfaces. The results hold for different geometries, including antiguiding structures. The concept put forward is important in that it might permit the observation of Dyakonov resonances; it might find applications also in the characterization of nanolayers of chemical and biological materials with magnetic properties, such as fluids of magnetic nanoparticles, as well as in sensing devices based on the unique properties of Dyakonov waves.

L.-C. Crasovan (lucian.crasovan@icfo.es) acknowledges a Juan de la Cierva Grant from the Spanish Ministry of Science and Technology.

*Permanent address, Department of Theoretical Physics, Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania.

References