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We consider the ground-state entanglement in highly connected many-body systems consisting of harmonic

oscillators and spin-1/2 systems. Varying their degree of connectivity, we investigate the interplay between the
enhancement of entanglement, due to connections, and its frustration, due to monogamy constraints. Remark-
ably, we see that in many situations the degree of entanglement in a highly connected system is essentially of
the same order as in a low connected one. We also identify instances in which the entanglement decreases as

the degree of connectivity increases.
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I. INTRODUCTION

Entanglement theory has experienced an impressive de-
velopment in the last decade, mainly due to the key role
quantum correlations play in quantum information science.
The novel concepts and mathematical methods developed in
this new research area are beginning to reveal their useful-
ness also in different contexts. A striking example of this
tendency is given by the physics of quantum many-body
systems. As an instance, the analysis of the role played by
entanglement in quantum phase transitions allowed for a
deeper understanding of this purely quantum phenomenon
[1-3]. In this scenario, entanglement theory is also giving a
fundamental contribution to the development of new meth-
ods capable of simulating efficiently strongly interacting sys-
tems [4-6].

Clearly, the correlations between different parts of a
many-body system originate from their mutual interaction. In
this sense it is natural to expect that the ground state of a
strongly interacting and connected quantum system will ex-
hibit a high degree of entanglement. However, this intuition
has to be taken cautiously, since the shareability properties of
quantum correlations are especially nontrivial and without a
classical analog. One of the main differences between clas-
sical and quantum correlations is the so-called monogamy of
the latter [7]. In the classical scenario, the fact that two sys-
tems share some correlations does not prevent them from
being correlated with a third party. On the contrary, two
maximally entangled quantum systems can share no correla-
tion at all with a third one. More generally, quantum corre-
lations are not infinitely sharable, and the more the entangle-
ment, the smaller the number of systems with which it can be
shared.

Consider two similar Hamiltonians consisting of the same
interacting terms between a pair of particles, the only differ-
ence being the degree of connectivity. One of them, for in-
stance, has only nearest-neighbor interactions, while the sec-
ond has also next-nearest-neighbor interactions. Let us focus
on the ground-state entanglement between two halves of the
system. Naively, the more connected Hamiltonian is ex-
pected to have a larger entanglement, since there are more
bonds connecting the two halves. However, in the more con-
nected system, each particle has to share the quantum corre-
lations with a larger number of particles, so the connecting
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bonds may give a smaller amount of entanglement. There-
fore, it is unclear which geometry leads to a larger ground-
state entanglement.

In this work we analyze the interplay between the en-
hancement of the ground-state entanglement due to connec-
tions and its suppression due to monogamy constraints. We
consider spin-1/2 and infinite-dimensional (harmonic oscil-
lators) systems of various geometries with two-body interac-
tions and focus on the bipartite entanglement between two
halves of the system. Remarkably, we see that in many situ-
ations the degree of entanglement in a highly connected sys-
tem is essentially of the same order as in the case of a low
connected one. Actually, we can even individuate systems for
which the entanglement decreases as the degree of connec-
tivity increases.

Before proceeding, let us mention that there exist some
works studying how the monogamy of entanglement affects
the ground-state properties of Hamiltonians with nearest-
neighbor interactions; see, for example, [8,9]. The ground-
state entanglement of a highly symmetric and connected sys-
tem, the so-called Lipkin-Meshkov-Glick model, was also
computed in [10].

This paper is organized as follows. In the next section we
will introduce the systems we are going to analyze, in par-
ticular recalling known results about entanglement calcula-
tions in the different cases considered. Then, in Sec. III, we
will show in detail how the entanglement depends on the
connectivity of the systems themselves. In order to individu-
ate a general behavior we will consider a variety of different
connectivity conditions. Specifically, we will analyze both
regular and random graph configurations, paying particular
attention to the case of bipartite graphs. The relationship be-
tween our findings and related results in the context of
entanglement-area laws will be outlined in Sec. IV. Even if a
way to quantify the action of monogamy in a multipartite
setting is still lacking, we will see in Sec. V that the analysis
of bipartite monogamy inequalities can shed some light onto
our findings. We will close the paper in Sec. VI by discussing
possible implications of our findings, in particular in the con-
text of classical simulations of quantum systems.

II. SPIN AND BOSONIC MODELS

As said, we consider two paradigmatic systems: namely,
interacting spin-1/2 and bosonic particles. Concerning the
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former, we study a system of n spin-1/2 particles under the
XX Hamiltonian

H=Efij[0'i®0"i+0';®0"§]a (1)
ij

where o (k=x,y,z) denote the Pauli matrices referred to the
ith particle. The coupling #; will be set different from zero
when the i-j couple directly interacts—i.e., in dependence on
the topology and connectivity of the system. The actual value
of the nonzero tij will be chosen randomly, in order to have
averaged properties and avoid the dependence of our results
on the details of the interaction. Interactions of the type (1)
may model highly connected physical systems, such as quan-
tum spin glasses [11]. The entanglement between two parts
of the system will be measured by the entropy of entangle-
ment E: namely, the von Neumann entropy

S(p)=-Tr[p log, p] of one of the reduced subsystems [12].
Concerning the bosonic case, we consider systems con-
sisting of n harmonic oscillators with quadratic coupling.
Such systems may model discrete versions of Klein-Gordon
fields, or vibrational modes in crystal lattices, ion traps, and
nanomechanical oscillators. We define the vector R of
quadrature operators by Rj=)A(j and R,Hj:f’j (1=<j=n),
where X ; and 13]» are the position and linear momentum op-
erators, respectively. For simplicity, we consider only a cou-

pling via the different position operators, in which case the
Hamiltonian is of the form

H RT<V/2 0 )R 2)
- 0 1,2/

where 1, denotes the n X n identity matrix. The potential ma-
trix V is defined via the harmonic coupling between oscilla-

tor i and j: namely, a()?i—)z ,~)2/ 2. For each geometry consid-
ered in the following, we denote by C the nXn adjacency
matrix of the corresponding graph, with elements ¢;;=c;=1
if the ith and jth oscillators are coupled and ¢;;=c;=0 oth-
erwise. Then, the potential matrix V is given by V;;=-ac;;
(i #j) and V;=1+aXc;;. The ground state of the system is a
Gaussian state characterized by the covariance matrix 7y
=(7,©v,)/2, with y,=V""% and y,=V"2 [13]. We use as
entanglement measure the logarithmic negativity [14] N, be-
tween two generic group A and B. It can be shown that N, is
given by [13]

Nl == 2 10g2 mln[l,Aj(nypr)], (3)

j=1

where A (M) is the jth eigenvalue of the matrix M. We de-
note by P the n X n diagonal matrix with jth diagonal entry
given by 1 or —1, depending on whether the oscillator on
position 1= j=<n belongs to group A or B, respectively.

III. ENTANGLEMENT IN DIFFERENT TOPOLOGIES
A. Neighbor coupling

The first configuration that we consider is a one-
dimensional (1D) chain of n particles, in which each of them
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FIG. 1. Closed chain of n=10 interacting particles in the
nearest-neighbor (n,=1, left), next-nearest neighbor (n,=2, center),
and fully connected configuration (n.=5, right). The entanglement
is computed between two halves of the system.

can interact with n, of its neighbors on each side. Thus, 7, is
the parameter that characterizes the degree of connectivity in
this setting (see Fig. 1). We consider a distance-independent
interaction, in order to avoid any dependence on the particu-
lar scaling of the interaction strength. In particular, given the
ground state, we calculate the entanglement between the two
halves of the system (groups A and B) as a function of the
number of interacting neighbors n.. The typical behavior in
the case of a XX system is reported in Fig. 2 for the case of
n=22 spins. The exact calculation of the ground state was
performed using the SPINPACK package [15]. The solid line
represents the averaged ground-state entanglement, where
the Hamiltonian parameters 7;; between pairs of particles are
randomly chosen in the interval [0,1], while the dashed line
gives the largest entanglement obtained. We clearly see that
the entanglement grows only slightly and, in particular, the
fully connected chain has a degree of entanglement compa-
rable to the nearest-neighbor coupled chain. Note that, by
contrast, the number of bonds connecting the two halves of
the chain increases as n? The same behavior has been ob-
served for different Hamiltonian operators, consisting of
other interaction terms, and smaller sizes.

We consider now the same configuration for the case of a
chain of harmonic oscillators. As said above, the interactions
between the particles simply correspond to oscillators of
coupling constant «. The entanglement between the two
halves of an open chain consisting of n=100 oscillators is
shown in the inset of Fig. 2, where the logarithmic negativity

FIG. 2. For a closed chain of n=22 spin-1/2 particles with XX
interaction (1), the entropy of entanglement is plotted versus the
number of connected neighbors, 7., averaged over 100 realizations.
The dashed line gives the largest entanglement obtained. Inset: for
an open chain of n=100 oscillators the logarithmic negativity N, is
plotted versus n.. From top to bottom the coupling constant « is
given by @=10,1,0.1.
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FIG. 3. Entropy of entanglement for a randomly coupled system
with n=10 spins (solid), its degeneracy (dash-dotted line) and its
energy (dashed line), as a function on ¢,. We averaged over 100
executions.

is plotted versus the number of coupled neighbors, n.. One
clearly see that the entanglement increases (almost linearly)
as far as n.=<n/2, whereas for higher connected systems the
entanglement is frustrated. The frustration mechanism is in-
deed stronger than in the spin case, the entanglement de-
creasing at some point as the number of connections in-
creases. Notice the quite universal behavior of these curves:
the position of the maximum does not depend on the cou-
pling constant «, and as one can expect, the entanglement
increases with a, for fixed n,.

Both examples reported here confirm that the monogamy
of entanglement plays a predominant role for highly con-
nected systems. As said, as the connectivity increases, each
particle of, e.g., set A becomes as well entangled with many
other particles of the same set. This in turn limits, for mo-
nogamy reasons, entanglement with particles of set B.

B. Random coupling

We have seen above that the details of the entanglement
frustration mechanism depend on the system under consider-
ation; nevertheless, the general behavior is the same for a
variety of situations. As another example, particularly differ-
ent from the 1D chain above, consider now a random con-
figuration in which each couple of particles i and j is con-
nected with probability c,, which will be called the
connectivity parameter. Then, the connections are given by
the edge of a graph with random (symmetric) adjacency ma-
trix. Concerning the case of the XX system, the typical be-
havior is reported in Fig. 3, where the entropy of entangle-
ment is plotted as a function of the connectivity parameter.
We also plot the degeneracy of the ground state. Indeed, if
the degeneracy was nonzero for a significant range of values
of ¢, the results should be carefully considered, since there
may be other ground states having quite different entangle-
ment properties. However, this does not affect the validity of
our results, since the degeneracy is equal to zero already for
small values of the connectivity parameter. Actually, this de-
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FIG. 4. Regular bipartite graph of n=10 interacting particles for
increasing connectivity.

generacy disappears for values of ¢, close to n/n, (where n,
is the number of connections of the complete graph)—i.e.,
when we are able to construct a connected graph with high
probability. In general, we see again that the entanglement
saturates and the saturation value is reached for a low value
of the connectivity, showing again the strong effect of mo-
nogamy.

In the case of bosonic oscillators, one also retrieves the
general behavior already highlighted in the previous configu-
ration. Namely, the entanglement increases up to a certain
value of the connectivity parameter (c, in the present con-
figuration), after which the monogamy constraint starts caus-
ing a decrease of the entanglement.

C. Bipartite graphs

We exploit now the configuration in which perhaps the
effects of monogamy show up more impressively: namely,
the case in which the system can be represented by a bipar-
tite graph. The latter is constituted by two sets A and B for
which particles belonging to the same set do not directly
interact (see Fig. 4). Then, a priori, one could expect that in
such a configuration the effects of monogamy should be
weaker than in the configurations discussed above. We report
here the results for both regular and random bipartite graphs
in the case of harmonic oscillators.

Let us first consider the case of a random bipartite graph.
As above, we name connectivity parameter c,, the probability
that a generic particle in A interacts with a particle in B. For
example, in the fully connected case (c,=1) each particle in
A is coupled to all the particles in B. For a fixed coupling
constant we look for the optimal ¢ such that the entangle-
ment is maximized. As shown in Fig. 5, we have that czpt
#1 in general, depending nontrivially on «. Namely, for
large values of a the maximum entanglement is provided by
a Hamiltonian with few connections for each oscillator. Vice
versa, for low values of « the completely connected case
tends to maximize the entanglement. Note again that par-
ticles belonging to the same set do not directly interact.
However, these particles become entangled through a com-
mon interaction with particles of the other set. This, at the
same time, limits the amount of entanglement between the
two sets because of monogamy.

In order to obtain a deeper insight into the behavior de-
scribed above, let us now consider a regular graph. In this
case, remarkably, it is straightforward to obtain an explicit
expression of the log-negativity for an arbitrary large number
of particles. Let us focus on a periodic system consisting of n
oscillators (labeled from 1 to n) and consider two sets com-
posed such that the even oscillators belong to A and the odd
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FIG. 5. For a random bipartite graph of harmonic oscillators the
logarithmic negativity N, is plotted (normalized for each «) versus

the connectivity parameter c, for different coupling constants a.
The total number of particles is n=100.

ones to B. If each oscillator in set A interacts only with 2n,
oscillators in B [specifically, the (2j)th oscillator interacts
with oscillators labeled 2k+1 with k=j-n,,...,j+n.], then
the interaction matrix V in Eq. (2) is given by a circulant
matrix Vy,, whose first row is given by the vector

v=(1+2an,- a,0, ...,- ,0,0,...,0,0,- , ... ,0,— ).

n. times n. times
The eigenvalues of Vy, are given by “)
Ne=1+2an,- Zaz COS|:(2] - l)k—:| (5)
j=1

hence, following Ref. [13], the log-negativity between sets A
and B can be straightforwardly obtained:

n/2-1

=

(6)

log,

l
2 )\n/Z k

When n is large, the sum above turns into a Riemann series,
which gives an explicit expression for the log-negativity:

Ny= - flan). )

where we have defined the function
fla,n) = f dx|logy) 1 +2an,—2a, cos[(2j - 1)x]
0 1

ne

—log,) 1+ 2an, - 20, cos[(2j —1)(m—x)]
1

(8)

in order to single out the dependence on « and the connec-
tivity parameter .. Noticeably, in Eq. (7) the dependence on
n factorizes, allowing us to analyze how the connectivity
affects the entanglement by simply looking at f(«,n,) for
different coupling regimes (see Fig. 6). It can be seen that the
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FIG. 6. For a regular bipartite graph of harmonic oscillators the
function f(a,n.) in Eq. (8) is plotted versus the connectivity param-
eter n, (arbitrary units, normalized for each «) for different cou-
pling constants « (see text for details).

results are very similar to the ones of a random bipartite
graph, indicating that the asymmetries of the latter do not
play a significant role. As in Fig. 5, for weak coupling the
entanglement increases with the connectivity of the system,
meaning that monogamy does not play a significant role. On
the other hand, for strong coupling the entanglement sud-
denly decreases with n,.. This is a clear sign of the action of
monogamy constraints, since for high values of a a high
degree of entanglement is created already for small n..

IV. CONNECTIVITY AND AREA LAW

In this section we want to elucidate the relation between
the findings exposed above and the general issue concerning
entanglement-area laws. A number of theoretical investiga-
tions have shown that, for a variety of physical systems, the
entanglement between two complementary regions scales as
the area between them [16]. For instance, it is shown in Refs.
[3,17] that, for noncritical systems with nearest-neighbor
coupling, the entanglement between a distinguished part of a
system and the rest increases as the number of connections.
Regarding more general interactions, in particular long-range
ones, the boundary area (given by the connections between
the two regions of the system) only gives an upper bound to
the entanglement [18]. In all these works the Hamiltonian of
the global system is kept fixed, whereas the size of the dis-
tinguished region varies. It is then clear that the monogamy
constraints do not act significantly, since the connectivity of
the systems remains unchanged with size. On the contrary, in
most of our previous analyses we kept fixed the size of the
distinguished region, whereas the connections between par-
ticles were modified by changing the degree of connectivity
of the Hamiltonians (see Figs. 2, 3, and 5).

Following an approach suitable for a comparison with the
works on area laws, we exploited also the dependence of the
entanglement on the size of the system. The results are re-
ported in Fig. 7, where the main panel refers to the case of an
XX spin system and the inset to a harmonic one. In both
cases we considered the nonrandom configuration exploited
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FIG. 7. For an XX spin system the entropy of entanglement E
between the two halves of the system is plotted as a function of the
system size n (averaged over 100 realizations). Inset: corresponding
graph for the negativity N, in a closed harmonic chain with a=1 for
nearest-neighbor coupling (dashed line) and optimal coupling (solid
line; see text).

in Sec. III A. In particular, we focused on the results corre-
sponding to (i) nearest-neighbor coupling and (ii) the optimal
configuration in which the number of connections, n,, is cho-
sen in order to give the maximal amount of entanglement.
For a closed harmonic chain, we observe that the entangle-
ment remains constant in the nearest-neighbor case (as we
expect from the results of Ref. [13]), whereas it increases
only logarithmically in the optimally connected case. Actu-
ally, an exact logarithmic increase can be derived in a fully
connected topology (i.e., n,=n), for which the computation
of the log-negativity is straightforward following again Ref.
[13]. There, a lower bound to the log-negativity is given as a
function of the coupling parameters. Fortunately, such a
bound turns out to be tight in the case of both nearest-
neighbor and fully connected systems [19]. In particular, for
the latter the log-negativity is given by

1
Nl=§10g2[1 +2na'], (9)

proving a logarithmic increase with n. Remarkably, the be-
havior is similar for a closed spin chain, as can be seen in
Fig. 7. Recall that in this case the optimal number of con-
nections n is always given by n®=n, as pointed out in
Sec. IIT A. Although our computations are not very conclu-
sive, they suggest a sublinear increase in this case too.

As said, the scenario in Fig. 7 is suitable for a comparison
with the works concerning area laws, in particular the ones
dealing with half spaces (see, e.g., Ref. [20]). We see that, as
expected, for nearest-neighbor interactions an entanglement-
area law is satisfied (since we are not dealing with critical
systems). On the contrary, the slight entanglement increase
for highly connected systems strongly contrasts with the in-
crease of the number of bonds linking the two halves of a
chain, which scales as (n/2)%. As recalled, in these cases the
boundary area only gives an upper bound for the entangle-
ment. Thus, our results reveal that the entanglement can ac-
tually scale sensibly slower than the area in highly connected
systems.
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V. MONOGAMY INEQUALITIES

To quantify how the monogamy of entanglement acts in
the analyzed scenarios we can refer to monogamy inequali-
ties. In particular, for the case of harmonic oscillators we
considered the inequality introduced in Ref. [21], where the
Gaussian tangle 7 is used as entanglement measure. We re-
call that the latter is defined as the square of the negativity,
for pure states, and then extended to mixed states via a con-
vex roof. In particular, the monogamy constraint for n modes
can be expressed as

n
7_1:2,.A.,n22 7_l:j’ (10)
=2

where 72" denotes the tangle between the first mode and
the remaining ones, whereas Tll 7 is the two-mode tangle be-
tween the first mode and the jth one. The difference between
the left- and right-hand sides of Eq. (10) is called residual
entanglement, and it indicates the presence of a complex
structure of the quantum correlations, not simply ascribable
to two-mode entanglement.

The results are reported in Fig. 8 for bosonic oscillators in
a regular bipartite graph (see Sec. III C). We see that when
the residual entanglement begins to be comparable to the
sum of the two-mode tangles, then the entanglement between
sets A and B starts to be suppressed. In other words, when a
complex entanglement structure appears, then particles be-
longing to the same set start to become quantum correlated.
As a consequence of monogamy, they can then share no
longer a high amount of correlations with the particles be-
longing to the other set and the bipartite entanglement be-
tween A and B is suppressed. Notice that as the strength of
the coupling between the oscillators increases, the effects of
monogamy become more and more important, as one may
expect by general considerations. The additional frustration
in proximity to the fully connected graph can be instead
attributed to symmetric reasons. More specifically, in a fully
connected graph the state of the system is completely sym-
metric, which in turn implies a reduction of the effective size
of the Hilbert space associated with the n oscillators. As a
consequence, the entanglement in the system is frustrated
too.

For spin systems we considered the monogamy inequality
presented in Refs. [7,22] where 7 is now the square of the
concurrence, or tangle, a measure of entanglement between
qubits. Figure 9 shows, for the regular bipartite graph with n,
connected neighbors, the quantities E}’ZZTII “/ and 72", For
any value of the connectivity, any spin is maximally en-
tangled with the rest, since 7'>~"=1. However, as the num-
ber of connections increases, the structure of entanglement
becomes highly nontrivial. This, as said, limits the bipartite
entanglement between sets A and B. Notice that, due to the
absence of an on-site interaction in Eq. (1), an analogy can
be seen between the XX system and the harmonic one in the
strong-coupling regime.

VI. CONCLUSIONS

We have analyzed the interplay between ground-state en-
tanglement and the connectivity in spin-1/2 and bosonic sys-
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FIG. 8. For a regular bipartite graph of n=90 harmonic oscilla-
tors the logarithmic negativity N, is plotted versus the number of
connections per oscillator 7. (solid line, left y axis). The dotted and
dot-dashed lines are the plot of 7> +" and 2]'-;27',1 J, respectively
(right y axis). From top to bottom the coupling constant is «
=1,0.1,0.01.

tems with two-body interactions. We have shown that the
ground-state entanglement does not necessarily increase by
introducing more interacting terms in the Hamiltonian. Actu-
ally, for some systems, it does decrease with the number of
connections. From a more applied point of view, the amount
of entanglement across different bipartitions of a system has
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FIG. 9. For a bipartite graph of XX spin systems with n=14, the
entropy of entanglement, E, is plotted versus the number of connec-
tions, n, (solid line, right y axis). The dashed and dot-dashed lines
are the plot of 712 -~" and E;’:lel:j, respectively (left y axis). The
average is taken over 100 realizations.

been related to the complexity of the classical description of
the state [23]. Although here we just focus on symmetric
partitions, it seems reasonable to expect that such partitions
have the highest entanglement (among the contiguous ones).
Thus, the previous analysis suggests that the bipartite en-
tanglement for many highly connected systems is similar to
the one for low connected Hamiltonian systems, where effi-
cient classical algorithms exist, like, for example, the density
matrix renormalization group (DMRG). As a matter of fact,
the latter method has recently been efficiently applied to a
specific highly connected model in order to analyze quantum
phase transitions in spin glasses [24]. The efficiency of the
DMRG in this scenario is not trivial, and it is related to the
fact that the specific system analyzed in Ref. [24] turns out to
be only slightly entangled. We have shown here that a large
variety of systems may have such a character, due to the
fundamental constraint imposed by the monogamy of en-
tanglement. Our results, then, may encourage the search for
novel classical algorithms able to simulate highly connected
quantum systems.
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