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Figure 3. Loss landscape of the toy model with a local loss function. We label in the contour plot the points for which we
calculate the Hessian and its eigenvalues. The loss landscape is shown here for only 2 qubits, because for the local loss if we have
more than 2 qubits and fix their rotational parameters θ for the 3D loss, we will not obtain the full range variation of the loss
from 0 to 1. The landscape looks qualitatively the same for more qubits.

Figure 4. Loss landscape of the toy model with |ψT〉 =
∑

{σ} |σ〉. In this case, the circuit is under-parametrized and cannot
reach minimum loss. Nevertheless, we can read from the Hessian’s eigenvalues that we reached a stable minimum. Furthermore,
one of the eigenvectors of the Hessian with eigenvalue λ = 0 is v = (θ1,−θ2). Along this direction, the loss is constant. The latter
can be verified in the contour plot.

We now discuss how the Hessian can help to understand the loss landscape.
First we initialize the parameters θ randomly and we want to find the parameters to generate the target

state. Figure 2 depicts the eigenvalues of the Hessian for different values of θ1 and θ2. The points (a)–(d) in
the optimization landscape show a possible trajectory of an optimizer. Point (a) shows an initialization in a
barren plateau, where all the eigenvalues of the Hessian are 0. Points (b) and (c) are non-extremal points in
this high dimensional optimization space where some of the eigenvalues are negative, some are positive and
the bulk of them is zero. Point (d) shows a well converged loss with no negative eigenvalues of the Hessian
and zero gradient ensuring that it is indeed a local minimum. Since the loss l = 0, we even know that it is a
global minimum. We also observe many degenerate zero eigenvalues which implies that the minimum is not
isolated. As it was the case for classical NNs, this is a consequence of the over parametrization of the VQC:
many different linear combinations of angles lead to the same loss function.

For two free parameters θ1 and θ2 and the rest fixed, we find that the amplitudes of the eigenvalues of
the Hessian do not depend on the system size. This might seem to contradict the phenomenon of narrow
gorge described in reference [21], where the authors describe that the valley in figure 2 becomes narrower
with an increasing number of qubits N. But in their work, they change half of the parameters collectively
along one axis and the other half along the other axis. Therefore, it is still true that the VQC is more likely
to be initialized in a flat region even with our description, because the parameter space becomes bigger and
the product of sinusoidal functions of equation (1) becomes smaller for a larger number of randomly
drawn parameters.

Figure 3 shows the loss landscape for a local loss function l = 1 −
∑

i |〈Ψ|0〉i|2, where |Ψ〉 = V(θ)|0〉 is
the variational state and |0〉i is the qubit state of qubit i. In contrast to the global loss of equation (3), we
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Figure 1. Variational circuits. (a) Toy model circuit with 1 qubit rotations around the x axis for N qubits without entangling
gates. (b) A general 4 qubit circuit with 1 qubit rotations R(ωi) = R(φ1,φ2,φ3) followed by CZ entangling gates. We denote by Li

is a combination of rotations and entangling gates.

Figure 2. Loss landscape of the toy model with a global loss function. The target state is chosen to be |ψT〉 = |0〉. We label in the
contour plot the points for which we compute the Hessians and its eigenvalues. For fixed parameters θi = 0 with i > 2 the loss
function is not dependent on the number of qubits. Panel (a) shows the vanishing eigenvalues which indicate the barren plateau
described in reference [21].

3. Loss landscape of VQCs: an analytical example

In this section we analytically characterize the curvature of the loss landscape with the Hessian. We start
with a simple circuit that can be solved analytically to get familiar with the concept of the Hessian of loss
functions of VQCs. We choose a toy model circuit introduced in reference [21] that presents barren
plateaus. The toy model is an N qubit VQC V(θ) = ⊗N

i Rx(θi) = ⊗N
i exp(−iθi/2σx), shown in figure 1(a),

with randomly initialized parameters θ that generates the state

V(θ)|0〉 =
n∑

k=0

(i)kP
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where |0〉 ≡ ⊗N
i |0〉i and P(·) stands for the sum of all possible permutations of the argument. For example

P
(
cos(θ1) sin(θ2)|01〉

)

= cos(θ1) sin(θ2)|01〉 + cos(θ2) sin(θ1)|10〉.
(2)

The aim of the variational algorithm is to rotate the initial state V(θ)|0〉 into a given target state |ψT〉 and to
maximize the fidelity F with respect to |ψT〉. For the particular target state |ψT〉 = |0〉, all the sin(·) terms
in the variational state of equation (1) cancel and the fidelity reads [21]

F = |〈ψT|V(θ)|0〉|2 =
n∏

i

cos2

(
θi

2

)
. (3)

Therefore, we can translate this optimization problem into the minimization of the loss function l = 1 − F ,
shown in figure 2, as a function of θ1 and θ2 and for θi>2 = 0.
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Source data are labelled aim to predict unlabelled data

Supervised Learning
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Unsupervised Learning
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x1

xn

a1

an

f(⌃iaixi)

• f is an activation function.

• if f(x)=Θ(x) (Heaviside), then one recovers the perceptron.

• The choice of the activation function depends on the problem. 

• The activation function allows onto have nonlinearities.

• In modern neural networks, the most used activations functions are 

the sigmoid and ReLu.

sigmoid

ReLu

Neural Networks
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• Cost function:


• Goal: minimize the cost function given the training set.


• Adjust the weights Ai and Bi to minimize the cost function.

x1

xn

Data Set

{(X, y)}

Input element Label

A1X +B1

f(...)

C =
1

N
⌃j(ypred,j � yj)

2

f(...)

A2X2 +B2

Neural Networks
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Classical/Quantum Data VS Classical/
Quantum Algorithms

PATRICK HUEMBELI, ALEXANDRE DAUPHIN, AND PETER WITTEK PHYSICAL REVIEW B 97, 134109 (2018)
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FIG. 2. Sketches of the Bose-Hubbard model (a), the SSH model
(b), and the SSH model with long-range hopping (c).

The domain classifier should not be able to distinguish the
two domains because their feature representation is invariant.
This is achieved by training the parameters of the domain
classifier !d such that the domain loss Ld is minimal. At
the same time, the parameters !f of the feature extractor are
identified by minimizing the function E(!f ,!y,!d ). Since the
domain loss also depends on the feature extraction parameters
!f , this optimization problem has an adversarial character
and leads to a competition between optimizing the domain
classifier and the label prediction loss or E(!f ,!y,!d ). This
results in a domain classifier that is well trained, but is unable
to distinguish the domains, as the feature representation of
the two domains is invariant. For the label predictor’s output,
the training is similar except that both parameters !f and !y

minimize the classifier loss.
To predict the labels of the target distribution, we can either

apply the label predictor or directly use unsupervised methods
such as t-SNE or k-means on the feature representation.

III. RESULTS

We now apply our method to several paradigmatic models
to benchmark its performance.

A. Ising model

We study the 2D square-lattice Ising model in the presence
of a local random magnetic field [41], H = −J

∑
〈i,j〉 σiσj −∑

j hjσj , where σi are classical spins, J is the interaction, and
hi ∈ [−h,h] are local random magnetic fields. The presence of
random fields shifts the critical temperature Tc associated with
the phase transition. We generate samples of configurations
for 20 × 20 sites with Monte Carlo simulations. The phase
transition for h = 0 can be found analytically and provides
a labeled source data. The configuration in the presence of
random fields is the unlabeled target data. The phase transition
found by the algorithm agrees with the literature [41]. We
notice, however, that in this simple case, a convolutional neural
network without domain adaptation has the same performance.
In other words, elementary transfer learning suffices (see
Sec. A 1 of the Appendix).

B. Bose-Hubbard model

As a next benchmark for the performance of the DANN
algorithm we choose the Bose-Hubbard model with a mean-
field treatment, which has also been used as a benchmark
of Ref. [15]. We investigate the 2D Bose-Hubbard model

FIG. 3. Phase diagram of the Bose-Hubbard model predicted by
the label classifier of the DANN. The dashed line represents the
phase transition directly calculated via the compressibility κ . The
predictions of the DANN and the exact value are in good agreement.

[Fig. 2(a)] with Hamiltonian

H = −J
∑

〈i,j〉
(b†

i bj + b
†
j bi) + U

∑

i

ni(ni − 1) − µ
∑

i

ni,

(4)

chemical potential µ, nearest neighbor hopping J , and on-
site interaction strength U . This model experiences phase
transitions at zero temperature from Mott insulating to su-
perfluid phases [42]. The inputs of the neural network are
the Gutzwiller coefficients [43] with a maximum number of
bosons per site of n = 20. The Gutzwiller coefficients have
been found with a simulated annealing method [44]. Since
the Gutzwiller approach maps the 2D Bose-Hubbard model
to a string of coefficients the input data are one-dimensional
and therefore the convolutional neural network is also one-
dimensional. An arbitrary line of the phase diagram at a fixed
z J/U = 0.005 is labeled for all the values of µ with the help
of the compressibility κ = ∂ 〈ni〉 /∂µ [45]. Here, z = 4 is the
number of nearest neighbors of each site, which is 2 for the
one-dimensional case. The target samples are unlabeled states
for a different value of z J/U = 0.1. After training on these
sets, we apply the domain adaptation algorithm on states of
the whole phase diagram. Results are presented in Fig. 3. The
algorithm recovers the celebrated Mott lobes [42], and the pre-
dicted phase transitions match the ones obtained from the
literature, as well as the phase transition obtained directly from
the compressibility (dashed line). At the tip of the first Mott
lobe the phase transition occurs at J/U = 1/(5.8z) [42,46].
For the higher Mott lobes the transition point is at around
J/U = 4n̄z, where n̄ is the boson density and at the same
time the number of the lobe.

C. SSH model with disorder

The SSH model [Fig. 2(b)] is a one-dimensional chiral
model that exhibits topological properties: this system is
characterized by a global topological invariant, the winding
number. The latter predicts the number of protected edge
states appearing at each edge of a finite-size chain with
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Applications of QML

Picture adapted from arxiv.org/2303.09491
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A quantum neural network
• QNN are quantum algorithms based on parametrized quantum circuits


• QNN are global unitary that depends on certain parameters θ

8
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A quantum neural network
Variational quantum circuit 


ares defined as:
|ψ > = U(θ) |ψ0 >

 is defined by 

a series of unitary 


operation: e.g.


U(θ)

Rx(θ) = ei θ
2 σx

 is completely positive trace 

preserving (CPTP) map

U(θ)

9
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A Quantum Machine Learning algorithm
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Data re-uploading with QNN
Includes non linearity in the input data

|0 >

|ψ >

Re-upload the data in the quantum circuit
Perez Salinas et al. Quantum 4, 226 (2020)
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Data re-uploading with QNN

Perez Salinas et al. Quantum 4, 226 (2020)

•Classical data are loaded as rotation in the qubit


•Three dimensional data  can be loaded using one rotation


•We call the uploading unitary 


•The processing unitaries are one qubit rotation 


•The layer in our QNN is:


⃗x

U( ⃗x)

U( ⃗ϕ )

L(i) = U( ⃗x)U( ⃗ϕ i)

12
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Data re-uploading with QNN

Perez Salinas et al. Quantum 4, 226 (2020)

•The wave function is constructed:





•For multilayer architecture:  





•We need a cost function for our classification task

•The more layers the more representation capabilities the 
circuit

|ψ( ⃗x, ⃗ϕ i) > = U( ⃗x)U( ⃗ϕ i) |ψ0 >

|ψ( ⃗x, ⃗ϕ ) > = ∏L(i) |ψ0 >

13
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Data re-uploading with QNN

Perez Salinas et al. Quantum 4, 226 (2020)

•Let’s assume we have a binary classification problem


•We can have  for and  for 


• We can put also a trashed value :


•The output is 0 if 


•For more dimensional classification we can have different  

P(0) |0 > P(1) |1 >
λ

P(0) > λ
λ

14
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Perez Salinas et al. Quantum 4, 226 (2020)

• Given a reference state in the block state , we can write 

the cost function as: 





•  is the corresponding labelled state to the  data point


•A classifier with this shape is universal

•Universal Approximation Theorem for classical NN

ψc

C =
M

∑
μ (1 − < ψμ |ψ( ⃗xμ, ⃗ϕ ) >

2

)
ψμ μ

15
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Perez Salinas et al. Quantum 4, 226 (2020)

• Single qubit classifier cannot produce any quantum 
advantage 


•A very large number of layer is needed to approximate a 
complex function


•The introduction of multiple qubits entangled may improve 
its performance


•The idea is to re upload the data in different cubit and 
entangle them

16
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Perez Salinas et al. Quantum 4, 226 (2020)

•After every upload a entangling layer is introduced 

•The classification is performed only on one qubit

•Not clear wether this prove advantage

17
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•Example on a simple 
classification on a circle


•The area of the two 
colours is the same


•Good approximation 
with 4 layer

18

Data re-uploading with QNN

Perez Salinas et al. Quantum 4, 226 (2020)
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Perez Salinas et al. Quantum 4, 226 (2020)

•Optimisation of a non convex function in 3 class problem

•Multiple entangled qubit improve the result

19
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Support Vector Machine
• Linear Classifier 


• Constructs a hyperplane or set of hyperplanes in a high or infinite-
dimensional space, which can be used for classification,


• The class attributed on the test data points depends on the side of 
the plane.


• How to choose the line? By maximising the distance between the 
two clusters.

20
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• We are given a training dataset of  points of the form (x_1, y_1) … 

(x_n, y_n ) where the y_i are either 1 or −1


• We want to find the "maximum-margin hyperplane" that divides the 

group of points  for which  from the group of points for which

21

Support Vector Machine
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• The SVM problem boils down to the minimisation of the cost 
function

L = [ 1
n ∑

i

max(0,1 − yi(βT xi − b))] + λ |β |2

• This reduce to a classical quadratic programming problem

• You can always write a linear system of equation to be solved to 
exactly find the global minimum of this function

• This is very costly for high dimensional data

22

Support Vector Machine
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Quantum Support Vector Machine
• The problem therefore boils down to finding the solution of a linear 

system of equations.


• For dense matrices, finding the solution of such a system of N 

equations is of the order .


• Here, quantum mechanics and quantum computers can help to have 
a speed-up.


• In this case, the role of the computer is to perform this matrix 
inversion.


• How? We sketch in the next slide the details of the algorithm 
introduced by Harrow, Hassidim and Lloyd.  

𝒪(N3)

Rebentrost et al, Phys. Rev. Lett. 113, 130503 (2014)
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Quantum Support Vector Machine
• A very famous algorithm has been designed to solve linear system of 

equation:





• Where  is a non sparse matrix with condition number k


• The algorithm find x with  steps


• There is a debate on the speed up due to QRAM for loading data


• Could impure classical support vector machine

Ax = B

A

O(log(n)k2)

24
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40

 Harrow-Hassidim-Lloyd (HHL) Algorithm 

Image from qiskit tutorial

SchemaHc representaHon of the circuit for the Hal algorithm 

Quantum Support Vector Machine
• Schematic representation of the circuit for the HHL algorithm


• Not feasible for NISQ devices

25
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Classical kernel method
• Embed the data in a Higher dimensional system


• Construct a Kernel function that is your “distance ”

• It is easier to find the hyperplane in higher dimensions

26
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Quantum Support Vector Machine 
The data are encoded in a quantum device, 


such as a quantum circuit, which computes the kernel. 

These kernels are then used in classical SVM. 

On the right an example of a dataset to show the capacity of 
quantum kernels. Blue (red) regions correspond to label 1 (0). 

Havlícek et al, Nature 567(7747), 209 (2019)  
27
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Quantum SVM with Kernel method
In machine learning, a “kernel” is usually used to refer to 

the kernel trick, a method of using a linear classifier to solve 
a non-linear problem. It entails transforming linearly 

inseparable data like to linearly separable ones.

The image space of a quantum computer is very large. 

We can leverage this  feature

Encode the classical data in a quantum computer:
xi → |Φ(θ, xi) > |Φ(θ, xi) > = U(θ, xi) |0 >

K(xi, xj) = < Φ(xi) |Φ(xj) >

The kernel is defined as:

28
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We can use the reverse trick to compute the kernel:

LETTER RESEARCH

implemented at each trial step, and the mitigated cost function is fed 
to the classical optimizer. We observe that the empirical risk in Fig. 3a 
converges to a lower value for depth l = 4 than for l =0, albeit with more 
optimization steps. The number of shots is an explicit parameter in 

≠∼ x xm mPr( ( ) ( )). We set R = 200 to obtain a smoother cost function, 
even though we used 2,000 shots in the experiment to estimate p̂y.After each training is completed, we use the trained parameters 
θ =∗ ∗b( , 0) to classify 20 different test sets—where each set of 20 inputs 

with plus labels and 20 inputs with minus labels is drawn uniformly at 
random for each of the three different random unitaries. We run these 
classification experiments at 20,000 shots, versus the 2,000 used for 
training. The classification of each data point is error-mitigated. 
Figure 3c shows the classification results for our quantum variational 
approach. We observe an increase in classification success with increas-
ing circuit depth (see Fig. 3c), reaching values very close to 100% for 
depths larger than 1. This classification success remarkably persists to 
depth 4, despite the decoherence associated with eight CNOTs in the 
training and classification circuits, for l = 4.

The binary measurement of the variational circuit classifier  
corresponds to a separating hyperplane in the quantum feature  
space and implements a linear threshold function as used in a  
conventional SVM14,18. To see this, we write py(x)=2−1 (1+y 
⟨ ⟩θ θΦ Φ| |x f xW W( ) ( ) ( ) ( ) )†  . If we now define θ θ =f wW W( ) ( )†  and 
the state Φ Φ Φ= | |x x x( ) ( ) ( )  , the ideal decision rule > −−x xp p yb( ) ( )y y  
corresponds to the labelling function Φ= +∼ w xm x b( ) sign(tr[ ( )] ).  
The trace is read as the Hilbert–Schmidt inner product between the 
normal vector w and the mapped datum Φ(x). This provides the moti-
vation to interpret the quantum state space as feature space with vectors 
Φ| Φ |x x( ) ( )  and inner products Φ Φ= | | |x z x zK( , ) ( ) ( ) 2 . We note 
that the use of C= ⊗H ( ) n2  as feature space would lead to a conceptual 
problem since a vector Φ| ∈Hx( )  is only physically defined up to a 
global phase.

A shallow variational circuit can restrict the possible hyperplane 
normal w. An unrestricted optimization over all hyperplanes, such as 
the standard Wolfe-dual of the SVM14, can be used when the kernel 

x zK( , ) is known. This optimization problem only depends on ∣ ∣T  var-
iables and is concave whenever x xK( , )i j  is positive semi-definite.  

This means that the unique, optimal solution can be found with poly-
nomial resources in the training set size.

The second classification protocol, quantum kernel estimation, uses 
this connection to implement a conventional SVM with this kernel 
directly. The quantum computer is used twice in this protocol. First, 
the kernel x xK( , )i j  is estimated on a quantum computer for all pairs of 
training samples ∈x x T,i j ; see Fig. 2c. This kernel is then used in the 
Wolfe-dual SVM to find the optimal hyperplane. In the classification 
phase the quantum computer is used a second time to estimate the 
kernel x sK( , )i  for a new datum ∈s S and the support vectors from the 
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Fig. 3 | Convergence of the method and classification results.  
a, Convergence of the cost function θR ( )emp  after 250 iterations of Spall’s 
SPSA algorithm. Red (or black) curves correspond to l = 4 (or l = 0). The 
cost function with p̂k estimates obtained from zero-noise extrapolation 
(solid lines) is compared to the cost function with unmitigated estimates 
(dashed). We train three datasets per depth and perform 20 classifications 
per trained set. c, The classifications results are shown as blue histograms 
for all three randomly chosen unitaries (a total of 60 classifications per 
depth and 20 data points per classification per label), with mean values 
represented by black dots. The error bar is the standard error of the mean. 
The inset shows histograms as a function of the probability of measuring 
label +1 for one test set of 20 points per label obtained with an l = 4 
classifier circuit, depicting classification of this set with 100% success.  

The dashed red lines show the results of our direct kernel estimation 
method for comparison, with Sets I and II yielding 100% success and Set 
III yielding 94.75% success. b, Example data used for both methods in this 
work. The data labels (red for +1 label and blue for −1 label) are generated 
with a gap of ∆ = 0.3 (white areas). The training set with 20 points per 
label is shown as white and black circles. For the quantum kernel 
estimation method we show the support vectors (green circles) and a 
classified test set (white and black squares). Three points are misclassified, 
labelled as A, B and C. For each of the test data points sj we plot 

α∑ ∗ x sy K( , )i i i i j  at the bottom of b. Points A, B and C, all belonging to label 
+1, give α∑ ∗ x sy K( , )i i i i j  = −1.033, −0.367 and −1.082, respectively.
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matrices containing the inner products of all data points used for training 
Set III (round symbols in Fig. 3b). The maximal deviation from the ideal 
kernel ∣ ∣−K K̂  occurs at element K8,15. A cut through row 8 (indicated by 
the red arrow in a) is shown in b, where the experimental (or ideal) results 
are shown as red (or blue) bars. We note that entries that are close to zero 
in the kernel can become negative (such as K8,30 in b) when the error-
mitigation technique is applied.
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Havlícek et al, Nature 567(7747), 209 (2019)  

U†(θ, xj)U(θ, xi) |0 >

Class 0

Class 1

< 0 |

< 0 |

< 0 | U†(xj)U(xi) =
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QSVM vs Quantum enhanced SVM
Quantum Support 

vector machine

Quantum enhanced Support 

vector machine

Data: classical Data: classical

Role of the 

quantum computer:


Perform the 

matrix inversion

Role of the 

quantum computer:


Evaluation of the kernel

30



Paolo Stornati Quantum Machine Learning

Variational quantum simulation 
Hybrid quantum classical approach

31
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Variational quantum simulation

Peruzzo et al, nat commun 5, 4213 (2014)

E = < ψ(θ) |H |ψ(θ) >

• We want to find the values of  that minimise the energy θ*

• How: using the variational principle:

• Goal: Minimise the energy of a given Hamiltonian

32
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• We consider the Heisenberg Hamiltonian:





•Feedback from quantum and classical device


•Training done with gradient descent


•Gradient computed with parameter shift rule

Ĥ =
3

∑
i=1

J1σx
i σx

i+1 + J2σ
y
i σy

i+1 + J2σz
i σz

i+1 +
4

∑
j=1

h1σx
i + h2σ

y
i + h3σz

i .
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Energy of the variational state as a function of the optimisation step

34

Variational quantum simulation
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Highly non linear non-convex optimisation problem

• If the dependence of  is through rotations:θ

•  is a set of unknown coefficientsb(N)
M 3N

• The cost function can be written as:

• The circuit ansatz is:

C(θ) = b(N)
M [

N

⨂
i=1

(cos θi, sin θi,1)]
T

C(θ) = ⟨Ψ(θ) |H |Ψ(θ)⟩

|Ψ(θ)⟩ = U(θ) |Ψ0⟩

Classical optimization of cost function

35Paolo Stornati Quantum Machine Learning
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• How do we perform the training?


• Minimisation of the loss function


• First approach: Gradient Free methods (Nelder Mead, etc…)


• Second Approach: Gradient descent. 


• How do we compute the gradient?


• We do not have back-propagation (yet?) on quantum circuit


• Parameter shift rule!

36Paolo Stornati
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Parameter shift rule
f(x, θ) = < 0 |U†(θ)B(x)U(θ) |0 >

M(θ) = U†(θ)B(x)U(θ)

∂θ f(x, θ) = < 0 |∂θM(θ) |0 >

∂θMθ = ∂θU†(θ)B(x)U(θ) + U†(θ)B(x)∂θU(θ)

We want to compute the expectation value of this formula:

Let us assume that the dependence on the parameters is:

U(θ) = e−i θ
2 σi ∂θU(θ) = −

i
2

σie−i θ
2 σi

37
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This imply that:
∂θMθ =

i
2

σiU†(θ)B(x)U(θ) −
i
2

U†(θ)B(x)σiU(θ)

∂θMθ =
i
2

U†(θ)[B(x), σi] U(θ)

For Pauli operators, one can show that:


∂θMθ =
1
2

U†(θ +
π
2

)B(x)U(θ +
π
2

) −
1
2

U†(θ −
π
2

)B(x)U(θ −
π
2

)

Therefore: 

∂θ f(x, θ) = < 0 |M(θ +
π
2

) |0 > − < 0 |M(θ −
π
2

) |0 >

38
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Consider the circuit:

C = < ψ0 |U†(θ) H U(θ) |ψ0 >

The circuit is 

sufficiently random

It approach a 

unitary 2-design

Training a quantum neural network
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Nature Communications  volume  9, Article number: 4812 (2018)

•For Harr random unitaries on  qubits:




•The Harr unitaries means that the circuit prepare states 
uniformly in the   dimensional space


•The gradient of the cost function is always

•Lipschitz continuous

•Easy to demonstrate from the analytical form of C

n
∂θ(C) = 0

2n − 1

40
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Nature Communications  volume  9, Article number: 4812 (2018)

•The problem is even worse


•For a circuit is of sufficient depth 


•The variance of the gradient:





•Zero variance means difficulty into training


•This limit is approached when approaching the unitary two 

design

Var[∂θ(C)] ∝ 2−n

41
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Nature Communications  volume  9, Article number: 4812 (2018)

Numerica example:


The hamiltonian is:




The number on layers is:

H = Z1Z2

L ∼ 10n

42
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Nature Communications  volume  9, Article number: 4812 (2018)

•When we increase the 
number of qubits from 2 to 
24 the problem become 
persist


•Large number of layers to 
approach unitary two 
design 


•Issue in trying deep 
quantum neural network

43
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Comparison with classical NN


Nature Communications  volume  9, Article number: 4812 (2018)

•The gradient in a classical deep neural network can 

vanish exponentially in the number of layers


• in a quantum circuit the gradient may vanish 

exponentially in the number of qubits 


•The gradient saturates to an exponential in the number 

of qubits because the output state is normalized.


•For QNN, the problem is not solved but mitigated in 

some cases 

https://www.nature.com/ncomms

