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Quantum gases in trimerized kagomé lattices
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We study low-temperature properties of atomic gases in trimerized optical kagomé lattices. The laser ar-
rangements that can be used to create these lattices are briefly described. We also present explicit results for the
coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a
single-component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per
trimer is verified in a mean-field approach. The main emphasis of the paper is on an atomic spinless interacting
Fermi gas in the trimerized kagomé lattice with two fermions per site. This system is shown to be described by
a quantum spin-1/2 model on the triangular lattice with couplings that depend on the bond directions. We
investigate this model by means of exact diagonalization. Our key finding is that the system exhibits nonstand-
ard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state
with an exceptionally large number of low-energy excitations. The possibilities of experimental verification of

our theoretical results are critically discussed.
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I. INTRODUCTION

The experimental realization of the Bose-Einstein conden-
sation (BEC) [1] linked the physics of cold atoms with that
of weakly interacting many-body systems, traditionally stud-
ied by condensed-matter physics. More recently, the seminal
theory paper by Jaksch er al. [2], followed by equally semi-
nal experiments by Greiner et al. [3], on the Mott insulator
(MI) to superfluid (SF) transition have paved the way toward
the analysis of strongly correlated systems within the physics
of cold atoms. In this sense, the physics of cold atoms is
nowadays merging with condensed-matter physics, solid-
state physics, and quantum information at the same common
frontiers and open challenging problems, such as, for in-
stance, the BEC-BCS crossover (see for instance [4]), frac-
tional quantum Hall effect (cf. [5]), the physics of one-
dimensional (1D) systems [6], etc. Quantum information has
given new impulses toward the understanding of quantum
phase transitions [7], and to understand better the known
(and develop new) numerical methods of treating many-body
systems [8].

A. Atomic lattice gases

One of most fascinating playgrounds of cold-atom phys-
ics is provided by ultracold lattice gases, i.e., cold atoms
trapped in optical lattices produced by standing laser waves
where, in the case of red- (blue-)detuned laser light, the po-
tential minima coincide with the intensity maxima (minima)
[9]. This technique has been of enormous interest during
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resent years. The setup can be chosen to be one, two, or three
dimensional, where the lattice forms range from simple pe-
riodic (such as a square in 2D, or a cubic lattice in 3D,
respectively) to more exotic lattices, such as hexagonal [10]
or kagomé [11] lattices, created with the use of superlattice
techniques [12]. In experiments, optical lattices offer an un-
precedentedly wide range of tunable parameters, which can
be changed during the evolution in situ and “in vivo,” i.e., in
real time. These possibilities, on one hand, link strongly the
physics of ultracold atoms in optical lattices to various areas
of condensed-matter physics, and on the other, they open
completely new ways to study quantum many-body systems,
to perform in various ways quantum-information processing
(cf. [13,14]), and even to realize special purpose quantum
computers, so-called quantum simulators [15].

The physics of ultracold atomic gases in optical lattices is
in general described by various versions of the Hubbard
model, which is probably the most important and structurally
simple model of condensed-matter physics, capable never-
theless of describing an enormous variety of physical phe-
nomena and effects [16,17]. Atomic ultracold gases may
serve as a “Hubbard model toolkit” [18], and several models
have been discussed in more detail in this context: the most
simple Bose-Hubbard model [2] (for the seminal condensed-
matter treatment see [19]), the Fermi-Fermi model (which
should eventually allow for quantum simulations of high-7.
superconductivity [20]) the Fermi-Bose model (which leads
to creation of composite fermions via fermion-boson or
fermion—bosonic hole pairing, cf. [21,22]), or Bose-Bose, or
more generally multicomponent systems. Quenched disorder
may be introduced in a controlled way to such systems
[23,24], which opens the possibility of studying the physics
of disordered systems in this framework.
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In a certain limit Hubbard models reduce to spin models
and this possibility has been also intensively investigated
recently for both atomic gases [10,25,26], and ion chains
[27]. Spin models enjoy particular interest because of their
simplicity and thus possible applicability in quantum-
information processing (cf. [26,28]). In this paper we will
discuss yet another possibility, i.e., the possibility of studying
frustrated quantum antiferromagnets (AFM’s).

B. Quantum antiferromagnets

Quantum antiferromagnets, and in particular frustrated
AFM'’s are in the center of interest of modern condensed-
matter physics (for a recent review, see [29]). One of the
reasons for this interest is that frustrated AFM’s are believed
to explain certain aspects of high-T, superconductivity [16].
In this context frustrated spin-1/2 models have attracted par-
ticular attention. At the same time almost all of these models
are notoriously difficult to handle analytically and numeri-
cally. The only exceptions are those models that exhibit long-
range Néel-type order, since there is a powerful method by
which long-range order can be identified numerically (see,
e.g., [30]), and if it exists, the semiclassical (spin-wave) ap-
proximation yields satisfactory results. In 2D only very few
exactly solvable spin-1/2 models are known [29]. In 1D ex-
act results can be obtained by the Bethe-ansatz technique in
a number of cases [31]. Moreover, nonperturbative bosoniza-
tion techniques and powerful numerical methods such as the
density matrix renormalization group (DMRG) method can
be applied. However, DMRG techniques become very diffi-
cult to handle in the case of disordered systems [32]. In 2D,
in the absence of long-range order, apart from renormaliza-
tion group approaches, numerical methods offer the only
possibility to investigate frustrated spin systems. However,
quantum Monte Carlo (QMC) simulations of Heisenberg
AFM'’s on frustrated lattices, such as the triangular and the
kagomé lattice, suffer from the “negative sign” problem. For
instance, attempts to obtain useful results for the Heisenberg
AFM on a triangular lattice (TAF) by QMC methods have
been futile as a consequence of this problem. Because of the
experience with this and other frustrated models, we expect
that the negative sign problem also invalidates QMC tech-
niques for the system to be studied in this paper. In contrast
with the failure of the QMC method, exact diagonalization of
the Hamiltonian of the TAF for rather small cells of the
lattice has produced the main result for this model: its
ground state, contrary to earlier conjectures, was shown to be
long-range ordered (see [33]).

According to Lhuillier and her collaborators quantum
Heisenberg AFM’s at very low temperatures exhibit four dis-
tinct kinds of quantum phases.

(1) Semiclassical ordered Néel phases, characterized by
long-range order in the spin-spin correlation function, break-
ing of the SU(2) symmetry, and a gapless spectrum with
AS.=1 magnon excitations. The standard example of such
order is provided by the Heisenberg AFM on a square lattice
in 2D. The theoretical description of such systems using the
spin-wave theory (cf. [16]) is quite accurate.
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(2) Valence bond crystals (VBC’s) (or solids), character-
ized by long range order in dimer coverings, with prominent
examples being the Affleck-Kennedy-Lieb-Tasaki model in
ID [34], or the Heisenberg model on the 2D checkerboard
lattice [29,35] (corresponding to a 2D slice of a pyrochlore
lattice). VBC’s exhibit no SU(2) symmetry breaking, short-
range spin-spin correlations, long-range dimer-dimer order
and/or order or long-range order of larger S=0 plaquettes,
and gapped excitations in all S sectors.

(3) Resonating valence bond (RVB) spin liquids (type I),
which exhibit a unique ground state, no symmetry breaking
of any kind, gapped fractionalized “spinon” excitations, and
vanishing correlations in any local order parameter. An ex-
ample of such a spin liquid is realized in the so-called ring
exchange model on the triangular lattice [29].

(4) Resonating valence bond spin liquids (type II), which
exhibit no symmetry breaking, no long-range correlations in
any local order parameter, and an extraordinary density of
states in each total S sector. Numerical work by Dommange
et al. [36] supports the conjecture of gapless deconfined
“spinon” excitations in this scenario. An example of such a
spin liquid is believed to be realized by the Heisenberg spin-
1/2 model on the kagomé lattice [29,37-43].

The kagomé spin-1/2 antiferromagnet (KAF) seems to be
a paradigmatic example of type-II RVB spin liquids, but un-
fortunately so far no experimental realization of this model
has been found among solid-state systems. Only the spin-1
KAF can be realized in solid-state experiments, but that sys-
tem has a gap to all excitations, i.e., it does not belong to the
type-II spin liquids [44]. The physics of the spin-1/2 KAF is,
however, not yet fully understood. There are papers that sug-
gest VBC-type order with large unit cells [45].

C. Spinless interacting Fermi gas in a kagomé lattice

We have proposed recently how two realize the trimerized
kagomé optical lattices using superlattice techniques, and
have studied various kinds of quantum gases in such lattices
[11]: (i) a single-component (polarized) Bose gas, (ii) a
single-component (polarized) interacting Fermi gas, and (iii)
a two-component (“spin”-1/2) Fermi-Fermi mixture. In the
subsequent paper [46] we concentrated on the second of the
above-mentioned situations and studied the polarized inter-
acting Fermi gas in the trimerized kagomé lattice at the fill-
ing v=2/3. Using the method of exact diagonalization of the
Hamiltonian we have shown that the system exhibits an un-
usual kind of behavior at low temperatures, which has led us
to propose a further class of possible behavior of frustrated
AFM’s:

(5) A quantum spin-liquid crystal, characterized by the
long-range Néel type of ordering at low 7, gapless spectrum,
and anomalously large density of low-energy excitations.

This paper is devoted to the presentation of the details of
the theory described in the above-mentioned two Letters
Refs. [11,46]. First, we discuss briefly the general properties
of interactions in trimerized kagomé lattices as well as the
case of a single-component Bose gas in the trimerized
kagomé lattice. Then we focus, however, our attention on a
trimerized kagomé lattice loaded with a spinless Fermi gas
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with nearest-neighbor interaction. At 2/3 filling per trimer
such a Fermi gas behaves as a frustrated quantum antiferro-
magnet, and exhibits quantum spin-liquid crystal behavior.
The motivation to study this model is at least fourfold.

(i) In a magnetic field such that the trimerized KAF is
driven into the magnetization plateau at 1/3 of the saturation
magnetization, the physics of the KAF is described precisely
by our model [37-39]. Studying our model will thus exactly
shed light on the theory of KAF and, hopefully, on experi-
ments on the KAF.

(ii) Theoretical studies (using exact diagonalization of the
Hamiltonian) indicate that the model has the fascinating
properties of what we have termed a quantum spin-liquid
crystal. We expect the behavior observed in this system in-
deed to be generic for other “multimerized” systems. First of
all it is clear that optical methods allow for creating many
similar spin models with couplings depending on bond direc-
tions. In the simplest case this can be accomplished for a
square lattice where one could achieve a “square lattice of
small squares,” for the triangular lattice to obtain a “triangu-
lar lattice of small triangles,” etc. One can expect that when
such procedures are realized for frustrated systems, this
might lead to similar effects as for the kagomé lattice.

(iii) One of the most fascinating possibilities provided by
the optical lattices is the possibility of “online” modifications
of the lattice geometry. We may go from triangular to
kagomé lattice in real time in a controlled way. Trimerization
(or generally multimerization) is a different experimental op-
tion, and it is highly desirable to explore its consequences.
Our model (apart from the model of the Bose gas in the
trimerized kagomé lattice) is one of the simplest ones to
explore these consequences.

(iv) Last but not least the model is experimentally
feasible.

D. Structure of the paper

The paper is organized as follows. In Sec. II we briefly
describe the laser arrangement that can be used to create a
trimerized optical kagomé lattice. In Sec. II B we first intro-
duce the Hamiltonian that governs the particle dynamics in
the lattice: it is a generalized Hubbard model that can be
used as a model for bosons, fermions, as well as for boson-
fermion or fermion-fermion mixtures in the lattice. We show
under which conditions a tight-binding description of the
particle dynamics is appropriate in such a lattice, and present
results of the calculations of the Hubbard model couplings as
a function of parameters of the systems and the degree of
trimerization. In Sec. II C we present in some detail the re-
sults concerning the physics of a Bose gas in the trimerized
kagomé lattice. Here we generalize the results of Ref. [11]
obtained in the hard-core boson limit to the case when more
than one boson can be present at the same lattice site. Sec-
tion II D discusses briefly the case of a Fermi-Fermi mixture
in the trimerized kagomé lattice.

In Sec. III we start our discussion of the case of 2/3
filling of the trimerized kagomé lattice with spinless fermi-
ons. We focus our attention on the case of strong intratrimer
and weak intertrimer coupling. First, we discuss various
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methods of creating an ultracold polarized interacting Fermi
gas in an optical lattice (Sec. IIl A). Then we discuss in
detail the intratrimer dynamics. In Sec. Il B we show that
the low-energy physics of such a gas at 2/3 filling is de-
scribed by an effective spin-1/2 Hamiltonian with strongly
anisotropic couplings. The exchange constant J of this
Hamiltonian is proportional to the intertrimer atomic interac-
tion potential which in the low-energy limit can be attractive
or repulsive depending on the species of interacting atoms.
In favorable cases it can also be manipulated by a magnetic
Feshbach resonance. The relation of the model to the Heisen-
berg spin-1/2 AFM in the kagomé lattice is discussed in Sec.
III C. To capture the entire parameter range of the model we
investigate the properties of the effective spin Hamiltonian
for positive and for negative exchange coupling. We start our
investigations of the effective spin model in Sec. I D by
looking at its classical and semiclassical behavior. Surpris-
ingly we find that for positive J there exists a very large
manifold of degenerate classical ground states (GS’s). The
semiclassical spin-wave analysis (discussed in Sec. IIT E and
limited to the most symmetric GS’s) does favor some of
those states but does not give a definite answer concerning
the real nature of the quantum ground state. In Sec. IV we
present the results of exact diagonalizations of finite cells of
the realistic spin-1/2 version of our model. It turns out that
even in this extreme quantum limit the ground state of our
model exhibits long-range Néel order of the same structure
as is found in the classical version. For positive exchange
coupling J>0 we observe a very high density of low-lying
eigenstates of the effective spin model. We associate these
low-lying states with the manifold of classical ground states
whose degeneracy is lifted by quantum zero-point fluctua-
tions. In the concluding section, Sec. V, we discuss experi-
mental routes toward verification of our results, and detec-
tion of the predicted effects. The paper contains two
appendices, in which we present the details of the calcula-
tions of the couplings in the Hubbard model, and the mean-
field theory of the single-component Bose gas, respectively.

II. ATOMIC GASES IN KAGOME LATTICES
A. Creation of optical kagomé lattices

In the following, we consider the atoms confined magneti-
cally or optically in the z direction at z=0. The atoms form
effectively a 2D system in an optical lattice in the x-y plane.
In order to create a kagomé lattice in this plane one can use
red-detuned lasers, so that the potential minima coincide
with the laser intensity maxima. A perfect triangular lattice
can be easily created by two standing waves on the x-y
plane, cos?(K, 1), with kj,=k{1/2,+3/2}, and an addi-
tional standing wave cos?(ky-r+¢), with ky=k{0,1}. The
resulting triangles have a side of length 27/ \3k. By varying
¢ the third standing wave is shifted along the y axis, and, in
principle, a kagomé pattern could be realized.

Unfortunately, this procedure presents two problems.
First, three lasers on a plane cannot have mutually orthogo-
nal polarizations, and consequently undesired interferences
between different standing waves occur. This problem has,
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FIG. 1. (Color online) Scheme of the proposed experimental
setup. Each arrow depicts a wave vector of a standing-wave laser.
The three vertical planes intersect at an angle of 120°. Dark (dark
blue in the online version) spots in the right kagomé figure indicate
the potential lattice minima.

however, a relatively simple solution: undesired interferences
can be avoided by randomizing the relative orientation of the
polarization between different standing waves, or by intro-
ducing small frequency mismatches, which, however, have
to be larger than any other relevant frequencies. The second
problem is much more serious, and is caused by the diffrac-
tion limit. Let us denote by ¢ the ratio between the separation
between maxima of the laser intensity (i.e., minima of the
resulting optical potential in the case of red-detuned laser
beam) and the half width at half maximum. To have a good
resolution of the potential minima one needs & to be defi-
nitely significantly larger than 2. In the case discussed above,
however, ¢ is only about 4 at ¢p= 7 in the ideal kagomé case.
Because of that, for any ¢, the three potential minima form-
ing the kagomé triangles cannot be resolved.

We propose to use the superlattice technique [12] which
we briefly describe in the following paragraphs, as a method
to generate ideal and trimerized optical kagomé lattices. The
proposed experimental setup is schematically shown in Fig.
1. There are three planes of standing-wave laser beams, and
the wave vectors of these lasers lie on a plane. In the par-
ticular case of Fig. 1, we have three standing waves (a triple)
in each plane. The laser fields within each plane are phase
locked. A kagomé lattice will be formed by the intensity
pattern that results from the sum of the laser intensities of the
triples in the x-y plane.

In order to resolve the three potential minima in the unit
cell of the kagomé lattice we must use at least two standing
waves in each of the three vertical planes shown in Fig. 1.
While the wave fields in the same plane must have identical
polarizations, the fields in different planes should not inter-
fere. As mentioned above, undesired interference cross terms
in the total intensity of the fields can be removed either by
randomizing the relative orientations of the polarizations be-
tween waves from different planes, or by introducing small
frequency mismatches. With this setup consisting of two
waves per vertical plane, we obtain the following intensity
pattern in the x-y plane:

3
I(r) = 1,2, [cos(K; - r + o;/2) + 2 cos(k; - T/3 + ;¢/6) |

i=1
[r=(xy)], (1)

where 0,=-1 and o=03=1 and the index i enumerates the
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vertical planes. The pattern formed by the maxima of the
intensity I(r) changes between a triangular lattice at ¢=0,
and trimerized kagomé lattices with varying mesh width for
0<¢<m, until at ¢=7 the uniform kagomé lattice is
reached. In this limit one obtains the value £é=7.6 at ¢p=1r.
This is sufficient to create a well-resolved ideal kagomé lat-
tice. Direct inspection shows that in this case a moderately
trimerized lattice can also be realized: ¢ remains sufficiently
large for 5m/12< ¢ =<, so that the potential minima can
still be resolved.

With the additional third beam shown in Fig. 1, a resulting
intensity pattern

3
I(r) = 1,2, [cos(K; - T + 30,¢/2) + 2 cos(K; - T/3 + ;h/2)

i=1

+4cos(k; - r/9+ o;p/6) > [r=(x,y)], ()

is obtained. With this arrangement it is possible to transform
the optical potential smoothly from an ideal kagomé case
into a strongly trimerized lattice. The value of ¢ increases in
this case to =14, and remains large in a wide range of angles

.

B. Hubbard Hamiltonian

Depending on the detuning of the laser relative to the
resonance frequency of the atoms, either the minima or the
maxima of the intensity patterns (1) and (2) form attractive
potentials for the atoms. If these potentials are sufficiently
strong, the tight-binding approximation holds [47], and the
dynamics of the atomic gas can quite generally be described
by a Hubbard-type Hamiltonian [2,3]

. 1
Hyyobara == 2 fij(C;ij +cicj) + 52 Unn;—1)
(ij) i

1
(ij)
Here ¢! creates an atom in a Wannier state localized at the

1
lattice site i. Depending on the atomic species the operators
cf,c,- represent either fermionic or bosonic creation and an-
nihilation operators. The parameters t;j, U, and Uj; of this
Hamiltonian are matrix elements of the one-particle Hamil-
tonian and of the interaction potentials of the gas in the Wan-

nier representation:
tiy=WilHo|W)), (4)

where H is the one-particle Hamiltonian,

hZ
Hy=——A+v(r), (5)
2m

with the one-particle potential v(r) o +I(r)-see Egs. (1) and
(2). The sign depends on the detuning. For the Bose gas
interacting via short-range van der Waals forces, the scatter-
ing at low energies occurs via the s-wave channel, and is
adequately described by the zero-range potential, so that
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FIG. 2. (Color online) Couplings for a perfect kagomé lattice
obtained using the Gaussian approximation (dotted lines) and using
the exact Wannier functions (solid lines). (a) Hopping matrix ele-
ments; (b) contact interaction in units of E,..

4 (6)

U=g2Dfd2x|Wi(r)

whereas

% ™)

Uij= 8w f d’x|W,(r)[W(r)

where the coupling g,p=4mh%a,/mW with m the atomic
mass, and with W the effective transverse width of the 2D
lattice in the z direction. In the case of polarized fermions U
vanishes, since s-wave scattering is not possible due to the
Pauli principle. Nearest neighbor interactions, on the other
hand, are possible, and in the case that they are due to dipo-
lar forces (cf. [48]) or similar long-range forces the couplings
become

L®

Ui~ f dx &X' W) PV(e — ") Wir')

where V(r) is the interparticle potential. Obviously, the same
expression holds also for bosons interacting via the potential
V(r). The Hubbard Hamiltonian (3) does not necessarily de-
scribe the physics of bare particles; it may equally well de-
scribe the physics of composite objects, such as, for instance,
composite fermions that arise in the analysis of Fermi-Bose
mixtures in the lattice in the strong-interaction limit [21].
The nearest-neighbor interactions and tunnelings are induced
by the original hopping of bare fermions and bosons, and the
corresponding values of #; and U;; have to be calculated
from the bare couplings following the lines of Ref. [21].

In this paper we present explicit results for the tunneling
matrix elements 7;; and the interaction strengths U and Uj; in
the case of zero-range potential—expressions (4), (6), and
(7). With this aim we need to determine the Wannier func-
tions W;(r) for kagomé-type lattices. The method by which
this task can be accomplished is presented in detail in Ap-
pendix A.

For the ideal kagomé lattice we have successfully gener-
ated the exact Wannier functions, and calculated the cou-
plings accordingly. These results were then compared with
the results of the variational method employing a Gaussian
ansatz (for details see Appendix A). Figure 2 compares the
results calculated with Wannier functions and the Gaussian
ansatz. For moderately strong potentials, say larger than two
times the recoil energy E,.., the Gaussian approximation be-
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FIG. 3. Couplings for a trimerized lattice obtained with a Gauss
function: (a) intertrimer (¢<) and intratrimer (¢= 1) hopping
matrix elements; (b) contact interaction terms in units of E,..

comes appropriate, giving errors less than 50%. For suffi-
ciently high potential amplitudes above 5E ., the results ob-
tained with the Gaussian approximation become practically
indistinguishable from the exact Wannier results.

Generating well-localized Wannier functions in the trim-
erized lattices is a difficult task. For this reason, guided by
the results for the ideal kagomé lattice, we have limited our-
selves here only to the results of the Gaussian approxima-
tion. Figure 3 shows the hopping and interaction matrix ele-
ments depending on the trimerization angle. The perfect
kagomé lattice can be obtained by setting ¢p= . As expected,
trimerization does not affect the on-site interactions very
strongly, but does change the tunneling rates by orders of
magnitude. Already a relatively moderate trimerization intro-
duces large difference between the inter- and intratrimer hop-
ping elements.

C. Bose gas in the trimerized kagomé lattice

As we mentioned in Sec. I, in the present paper our main
focus will be on a gas of spinless fermions on the trimerized
kagomé lattice at 2/3 filling. Other cases of interest which
we will briefly discuss now include a Bose gas and a Fermi-
Fermi mixture in this lattice.

In order to facilitate the calculations, we add to the
Hamiltonian (3) a term of the form —uX;n;, where u is the
chemical potential, that controls the average particle number
of the system. Working with a fixed number of particles is
possible, but technically very tedious. In the trimerized
kagomé lattice, the couplings #;; take the values ¢, ¢' for intra-
and intertrimer hopping, respectively. We set also U;;=V and
=V’ for intra- and intertrimer interactions.
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FIG. 4. Mott phases (denoted by the corresponding particle
numbers per trimer) of the state with lowest energy in the 7—(u
+21) plane for zero intertrimer hopping ¢'=0.

In Ref. [11] we have considered the limiting case of hard-
core bosons, when U was much larger than any other energy
scale, i.e., two bosons were not allowed at the same site. We
have shown then that in the strongly trimerized case (¢',V’
<V<r) the system will enter a trimerized Mott phase
with the ground state corresponding to the product over (in-
dependent) trimers. Depending on the particular value of &
=(u-V)/(2t+V) we may have 0 (u<-1),1(-I<pu
<0),2 (0=<a<1), or 3 (1< 1) bosons per trimer, i.e., fill-
ing factors v=0,1/3,2/3, or 1 boson per site. For fractional
filling, the atoms within a trimer minimize the energy form-
ing a so-called W state [49]: [W)=(|001)+]010)+|100))/+3
for v=1/3, and |W)=(|110>+|101)+|011))/\6 for v=2/3. 1t
is worth noticing that W states themselves have interesting
applications for quantum information theory (cf. [50]).

Generalizing the Landau mean-field theory of Ref. [19],
we have obtained the phase diagram in the 7/ =¢'/(2¢+V)
and & plane with characteristic lobes describing the bound-
aries of the Mott phases, given by 7' =(|u|-1)/2 for |u|=1,
and 7' =(3/2)||(1—||)/ (4| @|) for |u| < 1. Observations of
this Mott transition require temperatures 7 of the order of ¢’,
i.e., smaller than 7 and V. Assuming that U is of the order of
a few recoil energies [3], this requires 7 to be in the range of
tens of nanokelvin. The results for r<<V are qualitatively
similar.

In this paper we present a method to generalize these
results to the case when the bosons are not necessarily hard
core, i.e., U may be comparable with ¢. For simplicity we set
U;;=0, so that the Hamiltonian is still described by the three
parameters ¢ and ¢ for intra- and intertrimer hopping, and U
for the on-site interactions. Obviously, for vanishing intertri-
mer hopping, ¢’ =0, the system is in a Mott insulating state
with a fixed number of particles per trimer. The correspond-
ing Mott states are displayed in the phase diagram in the ¢
—(u+21) plane in Fig. 4. As ¢’ is increased the system un-
dergoes a phase transition into a superfluid state. To obtain
the phase diagram for this transition, Fig. 5, we have used a
generalization of the Landau mean-field approach of Fisher
et al. [19,51,52], also investigated in [53]. Details of the
method can be found in Appendix B. In our calculations we
have confined ourselves to values of the chemical potential
such that the particle number per trimer does not exceed four.
In Fig. 5, further lobes with higher particle numbers will
occur along the w axes for higher values of u than those
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FIG. 5. (Color online) Phase boundaries between Mott and su-
perfluid phases in parameter space of the hopping elements 7,#" and
the chemical potential u. Below the loops the state is in a Mott
phase, where the number of bosons per trimer is displayed in the
diagram.

shown. Instead of calculating the so-called superfluid order
parameter y=(b;)=(b) self-consistently, a fully analytical
expressions describing the boundaries in Fig. 5 can be ob-
tained, as is shown in Appendix B. We mention that by using
a cell strong-coupling perturbative expansion [54] the phase
boundary can be obtained with relatively little numerical ef-
fort with the accuracy of a quantum Monte Carlo simulation.

D. Fermi-Fermi mixture at 1/2 filling in the trimerized
kagomé lattice: Spin-1/2 Heisenberg antiferromagnet

For a fermion-fermion mixture, instead of the extended
Hubbard model described by the Hamiltonian (3) which in-
cludes nearest-neighbor interactions Ug]-, it is more appropri-
ate to consider the Hamiltonian with on-site interactions

only:

Hyp== 2 t(fif;+ T+ He) + ZVni (9)
@ !

Here f; and f denote the fermion annihilation operators for
the two species, and n;,7; are the corresponding occupation
operators. The tunneling matrix elements are ¢;;=¢ for intrat-
rimer and 7;;=¢" for intertrimer nearest-neighbor tunneling.
Hpp is then the spin-1/2 Hubbard model. In the strong-
coupling limit, 7,¢" <<V, this model can be transformed into
the #-J model [16] which reduces to the spin-1/2 Heisenberg
model for half filling,

HFFHHHeisenberg=J E Si' Sj+.]’ E Si' Sj7

<ij>intra <ij>inter

(10)
where J=472/V, J'=41'%/V, and S=(S*,$,5%) with n—7
=25°, fTf=8"+iS’, and f'f=5"-iS". It is exactly the model
described by HH¢e"berg that has been studied by Mila and
Mambrini [38,39] in their effort to gain a physical under-
standing for the low-lying part of the spectrum of the
kagomé antiferromagnet. The physics of this model is very
interesting. In the trimerized case, it seems to be clear that
the system qualifies as a RVB spin liquid of the second type.
The large density of singlet and triplet excitations can be
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predicted quite well by analyzing the number of “relevant”
dimer coverings of the trimerized lattice. The singlet-triplet
gap, if it exists at all, is extremely small. All of these findings
have so far no experimental confirmation. Experiments on
this system are thus highly desirable, and we hope that ultra-
cold atoms will allow their realization.

III. SPINLESS INTERACTING FERMI GAS IN THE
TRIMERIZED KAGOME LATTICE AT 2/3 FILLING

A. Experimental realization

Before we start to discuss the properties of the spinless
interacting Fermi gas in the trimerized kagomé lattice, we
shall first discuss the possibilities of preparing such a system.
There are essentially two ways of achieving this goal. First,
we may consider an ultracold gas of fermions that interact
via dipole-dipole forces. Bose-Einstein condensation of a di-
polar gas of chromium atoms has been recently achieved by
the group of Pfau [55]. The (magnetic) dipolar interactions in
chromium are significant, but not very strong. There are
many ongoing experiments, however, aimed at the creation
of ultracold gases of heteronuclear molecules, that could
carry electric dipole moments of the order of a debye (cf.
[56]). The observation of physics described in this paper us-
ing heteronuclear molecules with such strong dipoles should
be possible already at temperatures 7= 100 nK.

Another possibility of creating an interacting Fermi gas is
to use the gas of composite fermions that appears in the
low-temperature behavior of Fermi-Bose mixtures in the
limit of strong Bose-Bose and Bose-Fermi interactions. As
we have mentioned above the physics of such composite
fermions is described also by an extended Hubbard model, in
which the couplings result from virtual tunneling processes
involving bare fermions and bosons. In this case the obser-
vation of the low-temperature physics requires achieving low
but not unrealistic temperatures T=10-50 nK (cf. Ref. [22]).

The low-energy states may be prepared by employing
adiabatic changes of the degree of trimerization of the lattice.
For instance, one can start with a completely trimerized lat-
tice; then the filling ¥=2/3 may be achieved by starting with
v=1 and by eliminating one atom per trimer using, for in-
stance, laser excitations. One can then increase ¢’ and U’
slowly on a time scale larger than 1/J (=seconds). Alterna-
tively, one could start with ¥==2/3 in the moderately trimer-
ized regime. As in Ref. [3], the inhomogeneity of the lattice
due to the trapping potential would then allow one to achieve
the Mott state with »=2/3 per trimer in the center of the trap.
Nearly perfect 2/3 filling can be reached by loading a BEC
of molecules formed by two fermions into a triangular lat-
tice, generating a MI state adiabatically, transforming the lat-
tice to a trimerized kagomé one, “dissociating” the molecules
by changing the scattering length to negative values, and
finally optically pumping the atoms into a single internal
state. Preparing ¥=2/3 might involve undesired heating (due
to optical pumping) which can be overcome by using laser or
phonon cooling afterward (cf. [57]). Note that the imperfec-
tions of v can be described by a “z-J” kind of model, and are
of interest themselves.
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FIG. 6. The vectors 8;, i=1, ..., 6, pointing from the center of a
given trimer to the centers of neighboring trimers. Numbering of
the sites of the trimers is shown in the triangle on the left.

B. Effective spin model

The spinless Fermi gas in the trimerized kagomé lattice is
appropriately described by the Fermi-Hubbard Hamiltonian

Hpg=- 2 (tijf;rfj +H.c)+ E Ujnin;— E png,  (11)

(ij) (if) i
where 1; and U;; take the values ¢ and U for intratrimer
bonds and ¢’ and U’ for intertrimer bonds. wu is the chemical
potential, and n;= fj f; are the occupation numbers with f;, f}L
the fermion annihilation and creation operators. In the fol-
lowing we denote the sites of each trimer by 1, 2, 3 in the
clockwise sense as shown in Fig. 6.

In this section it is our aim to derive from the Hamiltonian
(I1) an effective spin Hamiltonian that captures in the
strongly trimerized limit, t', U’ <t<<U, the low-energy phys-
ics the model (11).

The intratrimer part of the Hamiltonian Hy is diagonal-
ized by introducing instead of the local fermion modes
f1, f2, and f5 the symmetric mode f=(f; +/> +f3)/\s’§ and the
left and right chiral modes f.=(f,+z.f>+22f3)/\3 with z,
=exp (i27/3):

) U
Hy " ==3m+ i+ E(ﬁz—ﬁ)—ﬂﬁ’ (12)

where n=f"f and where 1=n+ fjf+ +f7f_is the total number
of fermions in the trimer. In the strongly trimerized limit the
number of fermions is identical in each trimer. It is con-
trolled by the chemical potential: for U+J < u<2U+J there
are two particles in each trimer; one of them occupies the
symmetric state |1)=/7|0), while the second one occupies
either one of the chiral states |1+)=£1|1).

In the intertrimer part of the Hamiltonian Hyp, Eq. (11),
we neglect the hopping term, —E<a,~,5j>t’(fz,ifﬁyﬁH.c.) (a,B
=1,2,3 referring to intratrimer indices and i numbering tri-
mers), since any real (first-order) hopping process leads to an
excited state whose energy is O(U) higher than the ground-
state energy and since second-order (virtual) hopping pro-
cesses yield contributions which are small, of order "2/ U.
Then, the inter-trimer part of Hy reduces to

!

inter _ =~
Hyp' = 2 > (11,13 145, + 2.3 145, + MM w5, + 13,00 45,
i
+ 13,0 15+ 1M ivs,) - (13)
Here, 6,,v=1,...,6, denote the six vectors pointing from the
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central triangle to the six neighboring triangles; see Fig. 6.

Next we express the occupation numbers n,;,a=1, 2, 3,
in terms of the fermion operators f, f. (we suppress the site
index):

=3 O G 7] 04)

n,= %[ﬁ+ (zoft + 2 fO)f + fTafy + 2.f) + cos2m/3) T

+sin(27/3) 7], (15)

ny= %[r‘z + @S+ 2O+ 12+ 22f ) + cos(2m/3) 7"

—sin(27/3)7]. (16)

Here, the (pseudo)spin operators 7':= %(fjf_+ fif), 7=
—(@i/2)(fif-~f'f,) connect the right- and left-handed chiral
fermion states. Inserting expressions (14)—(16) into Hf{,’}”,
Eq. (13), yields bilinear terms in 7%, 7, linear terms in 7* and
#, bilinear terms in f7,f and linear terms in f* and f. Since
none of these terms changes the total number of fermions in
any of the trimers, we may set 7=2 in the resulting expres-
sion for H'"". However, terms containing the annihilation
operator f promote the fermion in the symmetric state of a
given trimer into the nonoccupied chiral state of the same
trimer. A glance at Hinr“, Eq. (12), shows that the energy of
this excited state is O(#) above the ground-state energy. Thus,
on account of analogous arguments as were given above for
the neglect of the hopping term of HiH"ff’, we also neglect all
terms containing the operators f*, f. The linear terms in 7', 7
sum to zero in the sum over the sites i so that we arrive at the
following effective intertrimer Hamiltonian (we omit an ir-
relevant constant):

N 6

J ~
Hoy=2 20 2 #i5) s (bis)- (17)

i=1 v=1

Here, i are the sites of a triangular lattice of N sites on which
the trimers are located, J=4U'/9, and the vectors &,
v=1, ..., 6, are the same as in Fig. 6. In Eq. (17), 7:(¢)

=cos(¢) 7; +sin(¢) 7} and bi.5,=bi5,=0, bi5="0i5=27/3,
bi.5,= bi5,==27/3, $i5=i5="27/3, 5= 5=0 and
¢i,55=¢i,56:277/3'

C. Effective spin model: Relation to kagomé antiferromagnet

At this point it seems appropriate to briefly discuss the
connection between the effective Hamiltonian H, derived
here as model for the dynamics of fermionic atoms on a
trimerized kagomé lattice and the model Hamiltonian that
has been derived by Subrahmanyam [37] and has later been
employed by Mila and Mambrini [38,39] to explain the ori-
gin of the high density of low-lying singlets of the Heisen-
berg antiferromagnet on the kagomé lattice. Mila considers
the spin-1/2 Heisenberg model on the trimerized kagomé
lattice with a strong intratrimer coupling J and a weak inter-
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FIG. 7. (a) Classical ground-state configuration for J<<0 (con-
figuration A). (b), (c) Classical ground-state configurations for J
>0 (configuration B and ferromagnetic configuration). The +,—
signs denote the chirality of the triangular plaquettes (19).

trimer coupling J'. In the lowest-order perturbation expan-
sion with respect to J' he arrives at the effective Hamiltonian
. J'
i kg 1—82 H;(Sy)H;(7), (18)
Cij)

where H;;(Sy)=Sy,Sy; and where H;(7) is that member of
our model H, that is associated with the bond ij. The op-
erator Sy; acts on the total spin of the trimer at site i, the
trimers form a triangular lattice. In the derivation H"/r" k¢
the Hilbert space of the three S=1/2 spins of the individual
trimers has been restricted to the subspace of total spin-1/2
states. The four states of this subspace can be be specified by
the z component of their total spin and by two (spin) chirali-
ties. The Heisenberg type Hamiltonian H,;(Sy) acts on the
two spin states of the trimers at sites i and j;H;;(7) acts on
their chiralities. Obviously, Hi;ﬁ;” kag turns into our model
Hamiltonian H,, if the trimer spins Sy, are fully polarized,
e.g., Sy=1/2 for all i. This state can be reached by applying
a sufficiently strong magnetic field to the original trimerized
kagomé AFM such that the total magnetization reaches 1/3
of the saturation magnetization, i.e., a magnetic field that
establishes the 1/3 magnetization plateau.

D. Effective spin model: Classical aspects

As is obvious from the derivation of the Hamiltonian (17),
only its 7=1/2 quantum version can serve as a realistic ef-
fective model for the atomic Fermi gas in the trimerized
kagomé lattice. Nevertheless, for orientational purposes it is
useful to first consider this model in the classical limit and to
also calculate its excitation spectrum in the semiclassical ap-
proximation, i.e., in the linear spin-wave (LSW) approxima-
tion. We first describe the symmetries of the model Eq. (17).

We have found that this model is not only translationally
invariant, but is also invariant under the point group of order
6, Z¢=75-Z,, where the generator of Z; (order 3) is the com-
bined rotation of the lattice by the angle 47/3 and of the
spins by the angle 27r/3 around the z axis, while the genera-
tor of Z, (order 2) is the spin inversion in the x-y plane, 7
— -7}, 7’ ——7). The model possesses no continuous spin ro-
tational symmetry and the lines bisecting the angle between
two adjacent lattice directions of the triangular lattice are not
mirror lines.

In Figs. 7(a)-7(c) we show the three ordered classical
states with small unit cells on the triangular lattice that are
compatible with this point group symmetry: a ferromagnetic
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state and two 120° Néel states labeled A and B which differ
by the distributions of the chiralities x over the cells of the
lattice as indicated by + and — signs. For an elementary cell
of the triangular lattice whose corners are labeled i,j,k in the
counterclockwise sense, y is defined as [58]

Xijk=( T;—T:’T;)+(l,‘]4],k)+(_],k—>k,l) (19)

X is positive (negative) if the spin turns in the counterclock-
wise (clockwise) sense as one moves around a triangular cell
in the counterclockwise sense. Because of the lack of mirror
symmetry mentioned above it is not surprising that the two
N3éel states have different energies: E?laSS:%TZJN JEB =
-1 7JN. Here, N is the number of sites and the superscripts
A and B correspond to the labels of the Néel states in Figs.
7(a) and 7(b).

More surprisingly the ferromagnetic state is found to be
degenerate with the Néel state B in the classical limit,
ERm-EB . Furthermore, as is indicated by the angle € in
Figs. 7(a) and 7(b) the classical energies of the three struc-
tures do not depend on their direction relative to the lattice
directions. In summary, in the classical approximation the
Néel state A is the ground state of model Eq. (17) for nega-
tive coupling J <0, while for positive J there are at least two
classically degenerate GS’s, the Néel state B and the ferro-
magnetic state.

In fact, we have performed a numerical analysis of the
12-spin cell by fixing the direction of every spin to nw/3
with n=0,--+,5, so that there were 6'% classical spin con-
figurations. This analysis has revealed that for J<<0 there are
six ground states, each of them exhibiting the Néel order of
type A (the sixfold degeneracy comes from a Zs symmetry of
our model). The results are dramatically different in the J
>0 case, where we have found in total 240 degenerate clas-
sical GS’s, among which the pure Néel states of type B and
ferromagnetic states sum up to a small fraction. For an illus-
tration, see Fig. 8 where two ordered GS’s with very large
unit cells [Figs. 8(b) and 8(d)] together with their parent
states [Figs. 8(a) and 8(c)] are presented. As will be seen
below, the large number of degenerate classical GS’s may
find its analog in a large density of low-lying excitations of
the quantum version of Eq. (17).

E. Effective spin model: Spin-wave theory

The linear spin-wave expansion around the ferromagnetic
GS based on the Holstein-Primakoff expansion [16] of the
spin operators 7,7 is straightforward. The spin-wave fre-
quency depends on the direction 6 of the magnetization rela-
tive to the main lattice directions of the triangular lattice [see

Fig. 7(c)]:
‘]T\ 1_§f(q,0),

wferro

N | W

where
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N
p ~
.\:\\.‘}...:.
«

R
<

FIG. 8. (Color online) N=12 spin cell: (a) Configuration B; (b)
Localized defect in configuration B marked by the triangular con-
tour. (c) Ferromagnetic configuration; (d) Line defect in ferromag-
netic configuration. The open arrows present spins that do not be-
long to the 12-spin cell. Their orientations are determined by the
boundary conditions of the cell.

. (2w :
f(q,0)=- sm(; + 0) sin #cos(q - 6))

+ sin(z?w + 0) sin(z?ﬂ- - 9>COS(‘1 - 6))

. (2w )
+ sm(T - 0>sm 0 cos(q - 63).

The quantum correction to the GS energy, SE®™, is found
as

3 1
5Eferro O===J ferro ,0). 20
(6) 4”21@‘“ (q.0) (20)

(In the above expression and till the end of this section all
expressions for energies present energies per site.) Evaluat-
ing the sum in this expression one finds that SE™™ is mini-
mal, if @ takes one of the six values 7n/3,n=0, ..., 5. Thus,
owing to the lowest-order quantum corrections to the GS
energy, the magnetization of the ferromagnetic state locks in
on one of the directions of the triangular lattice, i.e., the
ferromagnetic GS becomes sixfold degenerate in accordance
with the order of the point group of our model, Eq. (17).
With inclusion of these lowest-order quantum corrections the
GS energy for the preferred values of 6 is given by

3
Efem):—ZJ[T(T+ 1) -0.9017]. (21)

In order to obtain the spin-wave frequencies for the two 120°
structures we closely follow the method devised by Jolicceur
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and Le Guillou [59] for the semiclassical treatment of the
Heisenberg AFM on the triangular lattice. Since the unit cells
of both Néel structures A and B contain three sites one ob-
tains in both cases three surfaces of spin wave frequencies in
the magnetic Brillouin zone (BZ), w‘Z and wg, a=1,23. As
for the ferromagnetic state, the values of these frequencies
depend on the angle 6 between these structures and the main
directions of the triangular lattice, and hence the quantum
corrections to the GS energies of the states A and B, SE* and
SE*, depend on 6. For general 6 the expressions for the
spin-wave frequencies are rather complicated. However, by
considering small deviations of 6 from the the values 7n/3
we find that as in the ferromagnetic case the quantum cor-
rections SEA(6), OE(6) are minimal for 6=mn/3,n=0, ...,
5, i.e., the Néel structures A and B also lock in on the direc-
tions of the triangular lattice and hence both Néel states are
sixfold degenerate. Remarkably, for the structure B all three
branches of spin-wave frequencies are dispersionless with
the lowest branch consisting of N/3 zero modes, wf(q)=0
for all q in the magnetic BZ. This is reminiscent of the
Heisenberg model on the kagomé lattice (HAK) for which
one also finds N/3 zero-frequency spin-wave modes. The
nature of these zero modes is, however, quite different for the
two models. While they correspond to simultaneous out-of-
plane rotations of six-spin clusters in the HAK [60], they
represent rigid in-plane rotations of the three spins on the
corners of an elementary triangle in our model (17).

Since it is of interest, we also note here the expression for
the GS energy of the state B after the lowest quantum cor-
rection has been included:

EB=—§J[T(T+1)—1.487']. (22)

Comparison of Egs. (21) and (22) shows that quantum fluc-
tuations lift the degeneracy of the purely classical states. In
this semiclassical approach it appears that the ferromagnetic
state is the GS. We recall, however, that there is a very large
manifold of classical GS’s. In this manifold there may well
be states that have lower energies than the two states that we
have compared here.

IV. NUMERICAL RESULTS
A. Numerical method

To describe the physics of spinless fermions on a trimer-
ized optical kagomé lattice at filling 2/3 we need to consider
the model (17) for spin 7=1/2, i.e., in the extreme quantum
limit. Questions to be answered for this case are the follow-
ing. (i) Is the GS of the model (17) an ordered state or is it a
spin liquid either of type I, i.e., a state without broken sym-
metry, with exponentially fast decaying spin pair correla-
tions, and a gap to the first excitation, or of type I, i.e., a
kagomé-like GS, again without broken symmetry, with ex-
tremely short-ranged correlations, but with a dense spectrum
of excitations adjacent to the GS. (i) What are the thermal
properties of our system? After all, the model can only be
realized at finite, albeit low, temperatures.

To find answers to these questions we have performed
exact diagonalizations (ED’s) of the the Hamiltonian (17) for
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cells of N=12, 15, 18, 21, and 24 sites using ARPACK rou-
tines [61]. The sizes of systems that can be studied by ED are
restricted by the amount of memory space that is required for
storing the nonzero matrix elements. To reduce this require-
ment we block-diagonalized the Hamiltonian (17) by exploit-
ing its invariance under N-fold translations. It allowed us to
reduce the problem of diagonalization of a 2" X 2" matrix to
N independent diagonalizations of matrices of size ~2V/N
X 2N/N. This simplification not only lowers the memory re-
quirements but also greatly reduces the time of calculation,
especially when a large number of excited eigenstates is of
interest.

Nevertheless, ED of this Hamiltonian remains a demand-
ing task, as in contrast to SU (2)-invariant spin models the
Hilbert space of the Hamiltonian (17) cannot be separated
into subspaces of states with fixed total spin and total z com-
ponent of the spin. Because of this last circumstance we had
to limit our study to systems of at most 24 spins. Fortunately,
our results for 21 and 24 spins show qualitative and quanti-
tative resemblance. Therefore we regard them as representa-
tive for larger systems too. In presenting our results we shall
mainly confine ourselves to the two largest systems, since the
results for smaller systems suffer from strong finite-size ef-
fects. We remark that only the 12- and the 21-site cells can
be chosen such that these systems possess the full point-
group symmetry of the infinite lattice. The lack of this sym-
metry for the 15- and the 18-site cells adds to the large finite-
size effects observed in the results for these cells.

B. Ground-state and low-temperature properties

For J <0, i.e., for attractive interaction U’ between fermi-
ons on nearest-neighbor trimers, the highest levels of H,z/J
and the corresponding eigenstates are physically most rel-
evant. As will be seen below these levels are well separated
from each other so that we only need to calculate a few of
them. The situation is drastically different in the case J>0,
where we need the low-lying states of H,g. It turns out that
there is an abundance of such low-lying states. In this respect
the spectrum of H,g is reminiscent of the spectrum of the
Heisenberg Hamiltonian on the kagomé lattice [40,42]. The
answer to the question of whether there is long-range order
in our model (17) is found in Tables I and II, where we show
our numerical results for the spatial spin-spin correlations for
the /<0 and J>0 cases, respectively. The cells to which
these tables refer are shown in Figs. 9(a)-9(c).

Let us first consider the case J<<0, Table I. We have not
done a systematic finite-size analysis for these correlations.
However, comparing the data for the quantum 7=1/2 sys-
tems with the classical correlations there can be little doubt
that in its GS the system orders in the planar 120°Néel struc-
ture. The smallness of the out-of plane correlations lends
further support to this conclusion. We have also calculated
the expectation values of the chirality x,u, Eq. (19), in the
GSs of the 12- and of the 21-site cell and have found perfect
agreement with the pattern of positive and negative chirali-
ties of the classical configuration, Fig. 7(a). Apparently, for
J<0 quantum fluctuations have a rather weak effect on the
GS properties of our model (17).
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TABLE I. Spin-spin correlations (77 + 77} for /<0 . In the last row the 7°-7* correlations for N=21 are
also shown (numbers in parentheses). Owing to the Zs symmetry of the Hamiltonian (17) the correlations
depend only on the distance d from the central site 0 (see Fig. 9).

Ist neighbors 2nd neighbors 3rd neighbors 4th neighbors
d=1 d=\3 d=2 d=\17
Classical -0.125 0.25 —-0.125 —-0.125
N=12 -0.137 0.251 —-0.125
N=21 —-0.134 0.237 -0.117 -0.116
(-0.029) (-0.004) (=0.004) (=0.003)

For the case />0 our results for the spin-spin correlations contradicts the prediction of the LSW analysis according to
are presented in Table II. As for the case J<<0 we have not which one might have expected to find a ferromagnetic GS
been able to perform a finite-size analysis but again we in- (see Sec. IIT E). However, one must recall that besides the
terpret the data in Table II as evidence for the existence of 120° Néel GS and the ferromagnetic GS there are many
planar 120° Néel order in the GS of our model (17). This more classical GS’s. In a complete LSW analysis one would

TABLE II. Spin-spin correlations as in Table I, but for J>0. Sites j are numbered as in Fig. 9. For
comparison the correlations (S5S;+53S7) for the spin-1/2 Heisenberg AF on the triangular lattice are also
displayed (data from [41]). Dots below a value for the correlation indicate that this value occurs repeatedly.

Classical Triangular N=21 N=24
J Heisenberg AFM
T=0 T=0 =0 T=0.005J =0

1st neighbors

1 -0.125 -0.125 —0.0847 -0.027 —0.0964
2 —0.0957
3 —0.0964
4 —0.0964
5 —-0.0957
6 —0.0964
2nd neighbors
7 0.25 0.102 0.1352 0.050 0.163
8 0.1605
0.1605
10 . . . . 0.1630
11 . . . . 0.1605
12 . . . . 0.1605
3rd neighbors
13 —-0.125 -0.037 -0.0714 -0.022 —0.0830
14 . . . . —0.0833
15 . . . . —0.0830
16 . . . . —0.0830
17 . . . . —0.0833
18 . . . . —0.0830
4th neighbors
19 -0.125 —0.044 —0.0668 -0.019 —-0.0799
20 . . . . —-0.0799
21 . . . . —-0.0799
22 . . —-0.0799
5th neighbor
23 0.25 0.076 0.1563

053612-11



DAMSKI et al.

FIG. 9. (a) 12-, (b) 21-, and (c) 24-spin cell. O, V, and V mark
the three sublattices. Primed sites belong to periodic repetitions of
the cell containing the unprimed sites.

have to consider every one of these states, a task that is
practically impossible to perform. Relative to the in-plane
correlations the magnitude of out-of-plane correlations,
which are not displayed in Table II, is even smaller here than
in the case J<<0. Further support for long-range order in the
GS of the model (17) comes from a comparison of the spin-
spin correlations of this model with the same correlations of
the =1/2 Heisenberg AFM on the triangular lattice which we
have included in Table II. It is seen there that the GS corre-
lations of the model (17) decay more slowly than those of the
GS of the TAF which is known to possess long-range 120°
Néel order [33].

Additional strong support for existence of a Néel-ordered
GS in both />0 and J <0 cases comes from an investigation
of chirality patterns. In both situations the quantum-
mechanical calculation reveals that there exists a perfectly
periodic pattern of chiralities x;j as in the classical result.
For J>0 we found that x;;=~ +0.5 while for J<O y;j
~ +0.69. Both results are obtained in N=21, where the x;;
was calculated for six triangles located around the central
site (Fig. 7). The +,+ notation indicates opposite chiralities
between J>0 and J <0 results. A comparison of these val-
ues to +0.65 (Néel B configuration) and +0.65 (Néel A con-
figuration) leaves little doubt on the nature of these GS’s.
Finally, please notice the excellent agreement between quan-
tum and classical calculations for J<<0.

Values for the spin-spin correlations of the model (17) for
finite albeit small temperatures are also displayed in Table II.
For T=0.005J about 800 low-lying eigenstates were needed
to achieve convergence in the data for the correlations. Al-
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FIG. 10. (Color online) The curves from bottom to top corre-
spond to in-plane spin-spin correlation to the first neighbor (black,
dash-dotted), third neighbor (green, dashed), forth neighbor (blue,
dotted), and second neighbor (red, solid). Two thousand lowest
eigenstates were used in this calculation. The system size is N=21.

though these finite-temperature correlations are smaller in
magnitude than the GS correlations, they decay as slowly
with the distance as the GS correlations, i.e., long-range or-
der persists at finite temperatures. This is not surprising since
our model (17) has no continuous symmetry. One thus ex-
pects the order to vanish at a finite temperature 7. in a first-
or second-order phase transition. The temperature depen-
dence of spin-spin correlations in the N=21 system is de-
picted in Fig. 10.

The finite-size effects affect the correlations very strongly
for system sizes N<2I. In Fig. 11 we plot the spin-spin
correlations for the various system sizes. The data for N
=15,18 are averages of the raw data for fixed lattice dis-
tances over the lattice directions. Because of boundary ef-
fects the correlations do not show the expected sixfold sym-
metry. As a consequence the data for N=15,18 cannot be
used in a finite-size extrapolation. Nevertheless, despite these
large finite size effects, for both cases />0 and J <0 the GS
energies can be reliably extracted from the data for all the
cell sizes including the smaller ones. From the linear fits
shown in Fig. 12 we obtain Egg=-0.40]J| as the GS energy
in case A. This is to be compared with the classical GS
energy (see Sec. Il D): E4 =—37|J|==0.375[J|(r=1/2). In

the same way we find EgS:—O.22J as the GS energy per site

02 f
0.1} +
0 oS X
—01f G X
-0.2}
Istneighbor +  3rd neighbor K
X 2nd neighbor 4th neighbor
12 15 18 21 24

N (number of sizes)

FIG. 11. (Color online) Spin-spin correlations for the various
system sizes. The data for N=15,18 are averages of the raw data for
fixed lattice distances over the lattice directions.
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Ground state energy [|J|]
|
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FIG. 12. Ground-state energies in units of |J| as a function of the
system size N. Solid (dashed) line is a linear fit to J>0(J<0) data.
The fit gives in the J>0 case —0.22 J N-0.07 J, while in the J
<0 case 0.40 J N+0.20 J.

in case B, which is to be compared to the classical GS energy
(see Sec. I D) E5  =—37J=-0.1875J.

class =
C. Low-energy spectra

Let us finally discuss the energy spectra of our model for
both cases J<O(A), and J>0(B). Figures 13(a) and 13(b)
show the accumulated density of states (accumulated DOS)
of our model (17) for the two cases. On account of the break-
ing of the discrete symmetries of the Hamiltonian (17) by the
120° Neél order the standard expectation would be that the
GS is sixfold degenerate for the infinite model and, since
there is no continuous symmetry that could be broken, the
excitations should be separated from the GS by a finite gap
of the order of J. For finite systems the GS degeneracy will
be lifted. Nevertheless, we expected to find six low-lying
states in the gap below the lowest excited state. Figure 13(a),
J <0, does not reflect this scenario convincingly. However,
there are only a few states with energies substantially below
0.5|J]. We take this as an indication of a gap of this order of
magnitude in the spectrum of the Hamiltonian (17) in the
thermodynamic limit N — oo,

Obviously, for />0 the spectrum differs drastically from
the above expectations; see Fig. 13(b). There is an abun-
dance of very low-lying excitations, e.g., for N=21 there are
about 2000 (800) states with energies less than 0.09J(0.05J)
above the ground state. From the perfect symmetry of the
finite-temperature spin-spin correlations and their relatively
slow decay with temperature, we conclude that the majority
of these excited eigenstates support the spin order of the GS.

Comparison of the lower panel of Fig. 13(b) with the
scenario outlined above suggests that the gap, if any, is
smaller than 0.5X 1072J.

The rapid increase of the accumulated DOS that sets in at
excitation energies of this order of magnitude leads to peaks
in the specific heat,

> Eexpl— E/(kT)]
Jd i

—— , 23
NIT 3 expl~ E/(KT)] .

at the corresponding temperature. We have checked that the
peak shifts toward lower temperatures as the size of the sys-
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FIG. 13. (Color online) Accumulated density of states, i.e., the
number of states in the energy interval AE above the ground state
for (a) /<0 and (b) J>0. The curves in plot (b): blue (solid) N
=24, red (dotted) N=21, and green (dashed) N=18.

tem increases. Indeed, in the N=24 system, we found the
peak at kT=~2.5X 1073/ while for N=21 it is at kT=3.6
X 1073J; see Fig. 14 for the N=21 results. The precise deter-
mination of the peak position and amplitude in the N=24
system requires, however, a calculation based on more ex-

0.2 T T

specific heat

e

=

v
T

| 1 | 1
0 0.002 0004 0006 0.008 0.01
KT/

FIG. 14. Specific heat for N=21, Eq. (23). Two thousand lowest
eigenstates were used in the formula (23) to prepare this plot.
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cited eigenstates than we have been able to get [~240; see
Fig. 13(b)]. The shift of the peak position between these two
systems reflects the slightly different behavior of their accu-
mulated DOS’s. It would be very interesting to know
whether this trend continues for larger N so that in the ther-
modynamic limit N — o the specific heat no longer decreases
to zero at T7=0. In this case our model (17) would be an
example of a quantum model with a finite zero-temperature
entropy.

Because of the strong finite-size effects in the data for
N<21 the growth laws of the accumulated DOS with the
system size N cannot be extracted reliably from our data.
They are compatible, however, with an exponential increase
of the number of low-lying states with N.

The features of the low-energy part of the spectrum of our
model, Eq. (17), are strongly reminiscent of the low-energy
part of the spin-1/2 Heisenberg antiferromagnet on the
kagomé lattice [40,42]. There is, however, one decisive dif-
ference between the two models: while all GS correlations
were found to be extremely short ranged [43] in the HAK
there is, in all probability, long-range spin order in the GS of
our model. The absence of long-range order in the HAK led
Mila and Mambrini [38,39] to study the trimerized HAK in
the basis consisting of all independent dimer coverings of the
lattice by exclusively nearest-neighbor singlet pairs. By defi-
nition this restricted basis cannot produce any long-range
order in the GS of the HAK. Using it in analytical and in
numerical calculations Mila and Mambrini were able to re-
produce the low-lying part of the spectrum of the HAK. In
particular, they were able to determine the constant « in the
growth law o that describes the increase of the number of
low-lying states in the HAK. However, the approach of Mila
and Mambrini is not suited for the treatment of our model for
at least two reasons. (i) In contrast to the HAK our model is
not SU(2) invariant. Therefore a restriction of the full Hilbert
space of the model to exclusively singlet states is unwar-
ranted. (ii) We need to describe spin-ordered states, and this
is not possible in a basis consisting of products of nearest-
neighbor singlet pairs. We suggest that for our model (17) the
abundance of low-lying quantum states corresponds to the
abundance of classical GS described in Sec. III D. Zero-point
fluctuations lift the degeneracy of the classical states leaving
the spin correlations that are built into these classical states
qualitatively untouched. On account of its low-energy prop-
erties we have proposed the name quantum spin-liquid crys-
tal for our system.

V. CONCLUSIONS

In this paper we have discussed in detail the physics of
ultracold gases in trimerized kagomé lattices. Observation of
this kind of physics, and detection of the predicted effects
requires various steps: preparation of the trimerized lattice,
loading of the considered gases, and detection. The first step,
i.e., the preparation of the kagomé lattice, is discussed in
detail in Sec. IT A.

Probably the easiest experiment to perform concerns the
observation of the unusual Mott phases of the Bose gas.
Temperature requirements (=100 nK) are rather moderate.
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The challenging problem here is how to achieve 1/3,2/3
fillings, etc. In principle physics should do it for us, since the
“exotic” Mott phases are the thermodynamic phases of the
system at zero temperature. There is, however, another el-
egant method of preparing such phases. To this aim one
should start with a triangular lattice and achieve a Mott state
with 1, 2, 3,... atoms per site. Then one should deform the
lattice to a trimerized kagomé. The detection of such Mott
phases can be done simply by releasing the atoms from the
lattice, as in Ref. [3]. Coherence on the trimer level will then
be visible in the appearance of interference fringes in time-
of-flight images, which should reflect the on-trimer momen-
tum distribution ~2,-,jcoslz(17,-—7j), where 7; are the positions
of the minima in a trimer. In spite of the appearance of these
fringes, the Mott-insulator nature of the state would be ap-
parent in the presence of a gap for the excitations, which can
be observed by tilting experiments as those of Ref. [3]. The
opening of the gap should be analyzed as a function of the
trimerization degree '/t, which can be controlled as dis-
cussed in Sec. II A.

The experiment with a Fermi-Fermi mixture is more de-
manding. The main problem is, of course, the preparation of
the states in the low-energy singlet sector. One possible way
to prepare a singlet state in the trimerized kagomé lattice
with 7<<3t/4 could employ the recently obtained Bose-
Einstein condensates of molecules consisting of two fermi-
onic atoms [62] at temperatures of the order of 10 nK. Such
BEC’s should be loaded onto an ideal and weak kagomé
lattice. Note that the molecules formed after sweeping across
a Feshbach resonance are in a singlet state of the pseudospin
5. This can easily be seen, because the two fermions enter the
resonance from the s-wave scattering channel (i.e., in the
symmetric state with respect to the spatial coordinates), and
thus are in a singlet state of the pseudospin (i.e., antisymmet-
ric state with respect to exchange of electronic and nuclear
spins). Since the interaction leading to the spin flipping at the
Feshbach resonance [63] is symmetric under the simulta-
neous interchange of both nuclear and electronic spins, then
the formed molecule remains in a pseudospin singlet. The
typical size of the molecule is of the order of the s-wave
scattering length a, and thus can be modified at the resonance
[64], being chosen comparable to the lattice wavelength.
Growing the lattice breaks the molecule into two separate
fermionic atoms in neighboring sites in the singlet pseu-
dospin state. In this way, a singlet covering of the kagomé
lattice may be achieved, allowing for the direct generation of
a RVB state [65].

Assuming that we can prepare the system in a singlet state
at J' <T<J, then the density of states of the low-lying sin-
glet levels can be obtained by repeated measurements of the
system energy. The latter can be achieved by simply releas-
ing the lattice, so that after taking care of the zero-point
energy, all of the interaction energy is transformed into ki-
netic energy. In a similar way we can measure the mean
value and the distribution of any nearest-neighbor two-spin
correlation functions. With this aim one has to apply at the
moment of the trap release a chosen nearest-neighbor two-
spin Hamiltonian and keep it acting during the cloud expan-
sion (for details see [25]). In a similar manner we can mea-
sure the spectrum of triplet excitation, by exciting a triplet

053612-14



QUANTUM GASES IN TRIMERIZED KAGOME LATTICES

state, which can be done by flipping one spin using a com-
bination of superlattice methods and laser excitation [66].
The measurement of the singlet-triplet gap requires a resolu-
tion better than J'.

A similar type of measurements can be performed in the
ideal kagomé lattice, when J=J'. In this case, the singlet-
triplet gap is filled with singlet excitations [42]. By varying
¢, one can transform adiabatically from strongly trimerized
to ideal Kagomé, for which the final value of J will be
smaller than the initial J, but larger than the initial J'. In that
case, the system should remain within the lowest set of 1.15V
states that originally formed the lowest singlet band. The
singlet-triplet gap, if any, is estimated to be <J/20, and
should be measurable using the methods described above.

The observation of properties of the spinless interacting
Fermi gas is also experimentally very challenging. The first
step is to create the interacting Fermi gas, obviously. As we
discussed in Sec. III A this can be achieved with either di-
polar particles, or composite fermions. Both of these possi-
bilities are challenging themselves, although the rapid
progress in cooling and trapping of dipolar atoms [55] and
molecules allows one to hope that interacting spinless Fermi
gases will be routinely available in the next future. Preparing
of the 2/3 filling is also a challenge, but several routes have
been proposed in Sec. IIT A. Yet another challenge is to mea-
sure the predicted properties of the quantum spin-liquid crys-
tal.

One quantity which should be possible to measure rela-
tively easy, is the energy of the system. This can be done
simply by opening the lattice; by repeated measurement of
the energy E(T) at (definite) finite temperatures one would
get in this way an access to the density of modes, i.e., one
could compare the results with Fig. 13. From such measure-
ments one could infer the existence of a gap Eg,, since, if
E,,, is large enough, E(T) becomes T independent for kT
<E,,, Various other correlations could be measured using
the methods proposed in Ref. [25]. In order to measure pla-
nar spin correlations, one has, however, to lift the degeneracy
of the f, modes, e.g., by slightly modifying the intensity of
one of the superlattices forming the trimerized lattice. This
should be done on a time scale faster than the characteristic
time scales of other interactions, so that the state of the sys-
tem would not change during the measurement. In such a
case one can use far-off-resonant Raman scattering (or scat-
tering of matter waves) to measure the dynamic structure
factor, which is proportional to the spatiotemporal Fourier
transform of the density-density correlations. At frequencies
close to the two photon Raman resonance between the f.
modes, only f,-f_ transitions contribute to the signal, and
hence such measurement yields the desired information
about the correlations (ﬁm}‘f’ )fY)Tﬁ’)), and the spin correla-
tions of Figs. 10 and 11 and Tables I and II.
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APPENDIX A: CALCULATION OF THE PARAMETERS
FOR THE HUBBARD HAMILTONIAN

1. Wannier functions

For periodic boundary conditions the linear part of the
Hamiltonian (5) can be diagonalized in the quasimomentum
space using the scheme of Bloch [47]. In the kagomé lattice
a single cell contains three equivalent potential minima, and
hence three Wannier functions per unitary cell are required,
which can be obtained by transforming the Bloch states of
the first three bands into the Wannier basis. Let us first con-
sider one particle that is placed in an isolated trimer. The
Hamiltonian for this model reads H =—t{cTc2+c;c3+_c§c1
+H.c.). The eigenfunctions of H are do=(1,1,1)"/43,a,
=(-2,1,1)"/2, and a,=(0,-1,1)7/ V2 with respective eigen-
values {-2¢,t,#}. The transformation matrix (a,d;,d,)”"
leads to the states for which just one site of the triangle is
occupied. A similar scheme can also be applied for the Bloch
functions %(r):e"'k"’uf((r), where k is the quasimomentum,
and u (r) are the periodic functions of band i. For a particu-
lar quasimomentum k, the values of uﬁ(r) at the potential
minima are a;;(k), where j € {1,2,3} denotes the minimum
within the trimer (Fig. 6). Inverting the matrix a;; for a par-
ticular k one obtains complex coefficients Cops which are
then used to construct a periodic function having its maxi-
mum in only one of the three potential minima: wy
=3¢ ik, where 0={1,2,3} denotes the corners of the trimer.
Similarly as the u;, the w are functions with the same peri-
odicity as the lattice. Summation of these functions over k
with a proper phase leads to the Wannier functions [67]:
We=(1/N)Ze™Rw?, where R denotes the position of the
particular trimer on which the maximum of the Wannier
functions is located.

The point-group symmetry of the lattice is broken due to
the choice of the particular set of basis vectors for the recip-
rocal lattice. A direct consequence of this fact is that the
Wannier functions within a trimer cannot be transformed into
each other by a rotation of +2/3 around the center of the
trimer. Hence one obtains different hopping probabilities
between the sites of the triangle, t,»j=<Wi1|HO|W{{)
=(1/N12)Zk2 uCiuCj € Where € is the energy for the quasi-
momentum k in band u. The Wannier functions can be
symmetrized by summing up Bloch functions multiplied
with a k-dependent phase factor e=*Ti, where r; is the posi-
tion of one of the three potential minima within a cell. The
hopping elements change then to t[j=(1/N12)Ekcos k- (r;
—T1;)2,C; ,C; o€, Which are independent of the position now.
The cost of the symmetrization is that the Wannier functions
are not orthogonal anymore, but the overlap remains rela-
tively small.
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2. Gaussian ansatz

Apart from the case of the kagomé lattice, it is difficult to
obtain the Wannier functions reliably. The coefficients for the
Hubbard-Hamiltonian can be alternatively obtained using a
Gaussian ansatz [68], which, in the case of a perfect kagomé
lattice, and for deep lattice potentials above S5E,.. leads to
results which are practically indistinguishable from those of
the Wannier functions. The shape of the Gaussian function
reads  f(x,y)=v2/(o.0,mexp(-x*/ oy)exp[-(y—yo)*/ o3 ].
The center y,, and the widths o, and o, are the variational
parameters minimizing the energy functional: E
=[" dx[”, dy[V(f(x,y))?+f(x,y)?V(x,y)]. The Gauss func-
tions for the other two minima in the trimer are obtained by
rotating the Gaussian function by i%rr around the center of
the trimer.

APPENDIX B: MEAN-FIELD THEORY FOR A BOSONIC
GAS

The boundaries between Mott insulator and superfluid
phases can be obtained by means of a mean-field approach
similar to that employed in Ref. [21]. We consider only on-
site contact-interaction terms, but contrary to Ref. [21] we do
not restrict ourselves to the hard-core limit. The system is
governed by a Bose-Hubbard Hamiltonian of the form H
:Htr+Hhop’ with

1

H,==- 12 (bjbﬂ' Hc)+ EE nin;—1) - ,U«E n;,
(i) i i

(B1)

Hyop=—1'2 (bjb;+H.c)), (B2)

(kD)

where 7,1’ (denoting the intra- and intertrimer hoppings) and
wm are measured in units of the on-site interaction potential U.

Assuming a fixed number of atoms n per trimer, we con-
sider all possible Fock states of the form |nin,ns) with n,
+n,+n3=n. For example, for one particle per trimer the Hil-
bert space contains the Fock states [100),|010), and |001).
Since the model is invariant under rotation of 2m/3
the eigenstates are of the form |W,)=(]100)+z|010)
+22001)/\3, with ze{l,explim),expl-i3m)}, implying
states with no, left, and right chirality, also known as W
states [49]. We denote z,=exp(+i27/3) and introduce the
operators B,=(by+2.by+72b3)/ V3,By=(b,+by+b3) /3.
Their commutation relations are [Ba,B;.]= O, B={0, +,
—}. The chirality operator is defined as y= (BIB+—BfB_) mod
3. Equation (B1) can be rewritten into the form

Hy=~13B}By+ (1 — w){B}By+ BB, + B'B_} + +{(B}>
+2B'B)(B2+2B,B.) + (BI? + 2B!B")(B> + 2B,B_)
+ (B +2B}B!)(B> +2B,B,)}. (B3)
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Therefore [exp i27/3(B'B,~B'B_),H,]=0, and hence
the chirality of a state is a conserved quantity. It can be
shown that the ground state has chirality zero, and therefore
we restrict ourselves henceforth to these states.

For a given number of particles n per trimer, we denote by
|W*) a particular normalized nonchiral sum of permutations
of a set ny,n,,n3;, where p denotes different allowed non-
chiral states. For example, for two particles per trimer, two
possible states are allowed: |[Wh)y=(|110)+|101)+|011))/+3
and |W2)=(]200)+]020)+]002))/ V3. We can then diagonalize
the Hamiltonian H,, in this basis, H*#=(W®|H,| W), obtain-
ing the eigenenergies ‘5,[1 and eigenstates |<ﬂn) where 0=/
<n. The lowest energies 62 for each particle number n have
to be compared to obtain the ground state in the (r— u)-phase
space.

If the intertrimer hopping ¢’ is small, the phase boundaries
in the -1’ — u phase diagram can be well estimated by using
a mean-field approach [19,51,52]. We introduce the super-
fluid order parameter ¢=(b;)=(b}), for every site i. Neglect-
ing fluctuations of b,-,b'i-" in the second order, we can substi-
tute b;b,: g[/(b;+b,»)— gbzl, and hence Hj,, can be decomposed
into a sum of single-site Hamiltonians of the form Hy,,
~ 61" Y -231" y{B+B). The Hamiltonian H can be decom-
posed then into two parts H=Hy+V, with Hy=H+61' 7 and
V==-2¢'\3 ¢(BO+B$), where H, is perturbed by V. Up to
second-order perturbation theory, the energy becomes of the
form E= €2+ rtﬁz, where

Kyavi)I?
LTI

r=6t' P+ >,

m=n=1,i €~ Elm

(B4)

The Mott insulator to superfluid transition may be identified
by the equation r=0, since for »> 0 the energy is minimized
for 7 is zero, and for r<<O ¢ acquires a finite value. The
equation r=0 defines a 2D manifold in the ¢’ —7—u param-
eter space.

As an example, we determine in this appendix the expres-
sion for the boundaries of the Mott phase with one particle
per trimer. Due to the form of Eq. (B4) this calculation de-
mands the knowledge of the eigenenergies and eigenfunc-
tions for n=1 and 2. For n=1, |4)=(|001)+|010)
+100))/y3=B|¢) and €)=(y| Hy| ¥)=—u—2t. For n=2,

1 —
egv‘:5(1 TN +202+320) —1-2p, (B5)
and [y3")y=cos ¢y ,|W3)+sin ¢ |W3), with
_1 - . 2 2
tan ¢ | = w3 {(1+21) F V(A +20)=+32t7}.  (B6)
12t

At t'=0 the region of one particle per trimer is provided by
the condition 0< 6(1) = 62, ie, when =2rsust
+[1=(1+20)%+32¢%]/2.
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After a straightforward but tedious calculation, we can
then calculate the sum in Eq. (B4),

K |V|t!/>|2 . ( (6 — 24t — 4) 3 )
mgz,i 61 é, =4 lpz,udz—,u(Zt+l)—8t2_2t+,u'

(B7)
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Hence, solving for r=0, we obtain the value of ¢’ at the
phase boundary:

1/2(M —u2r+1) - 8t2)(2t+,u)
(u+80)(21 + 1/3) — u? — 8¢

’

(B8)
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