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Abstract. We are interested in the problem of characterizing the correlations
that arise when performing local measurements on separate quantum systems.
In a previous work (Navascués et al 2007 Phys. Rev. Lett. 98 010401), we
introduced an infinite hierarchy of conditions necessarily satisfied by any set of
quantum correlations. Each of these conditions could be tested using semidefinite
programming. We present here new results concerning this hierarchy. We prove
in particular that it is complete, in the sense that any set of correlations satisfying
every condition in the hierarchy has a quantum representation in terms of
commuting measurements. Although our tests are conceived to rule out non-
quantum correlations, and can in principle certify that a set of correlations is
quantum only in the asymptotic limit where all tests are satisfied, we show that
in some cases it is possible to conclude that a given set of correlations is quantum
after performing only a finite number of tests. We provide a criterion to detect
when such a situation arises, and we explain how to reconstruct the quantum
states and measurement operators reproducing the given correlations. Finally,
we present several applications of our approach. We use it in particular to bound
the quantum violation of various Bell inequalities.
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1. Introduction

The main goal of quantum information science (QIS) is to understand the possibilities and
limitations of the quantum formalism for information processing and communication. Research
in QIS is concerned on one hand with the design of new protocols exploiting the transmission
and manipulation of information encoded in quantum states (see for instance [1]). On the
other hand, it seeks to identify the constraints on information processing imposed by the
quantum formalism. For instance, various information tasks, such as unconditionally secure
bit commitment, have been shown to be impossible in a quantum world [2].

A standard scenario in QIS, and which serves as a primitive for more complex protocols,
consists of two distant, non-communicating parties, conventionally called Alice and Bob, who
share a quantum system in a joint state ρ. Each party makes a measurement on his share
of the state and obtains a classical outcome. On a phenomenological level, we may describe
the situation by saying that the two parties have access to a black box (see figure 1). When
Alice inputs a measurement X into the box, she gets as output a measurement outcome
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Figure 1. Local measurements on a system shared by two observers viewed
as a black-box process. Alice chooses a measurement input X and obtains a
measurement output a ∈ X . Similarly, Bob chooses an input Y and receives
an output b ∈ Y . The behavior of the system is characterized by the joint
probabilities P(a, b).

a ∈ X ; similarly, when Bob inputs a measurement Y , he receives an output b ∈ Y . The behavior
of the box is completely characterized by the joint detection probabilities P(a, b). From now
on, we simply call a behavior the set P = {P(a, b)} of all such probabilities.

Though in the above scenario the parties are separated and perform local measurements,
their outcomes a and b may be non-trivially correlated, in particular if the initial quantum state ρ
is entangled. These correlated data can be exploited for different tasks, such as communication
complexity [3] or key distribution [4]. From the perspective of QIS, it is thus meaningful to
characterize which outcome correlations can or cannot be produced by two non-communicating
quantum observers. The main problem with which we are concerned in this paper is thus the
following: given a behavior P , do there exist a quantum state ρ and local measurements X and
Y reproducing the outcome probabilities described by P? Note that we do not impose here any
constraints on the dimension of the system shared by Alice and Bob, as we are interested in the
most general set of correlations that can be obtained with quantum resources.

The special case of classical observers is relatively well understood. The correlations
obtained in this scenario coincide with the ones that can be achieved with shared randomness,
or using another terminology, with those that are described by local-hidden variable models [5].
For a given number of possible measurement inputs and outputs, the set of local classical
correlations forms a convex polytope whose vertices correspond to all the possible deterministic
assignments of outputs to inputs. It thus follows that linear programming can be used to decide
if a given behavior is reproducible by two local classical observers [6, 7]. The facets of the
classical polytope, which form the boundary of the classical region, correspond to the well-
known Bell inequalities [8].

Our understanding of the general case of quantum observers, with which we are concerned
here, is more rudimentary. The difficulty lies in the fact that we do not have a practical
characterization of the set of quantum behaviors and that this set cannot be described by a
finite number of extreme points (see figure 2) [9].

Apart from the QIS motivation, the problem of characterizing the set of quantum behaviors
is also of relevance from a fundamental perspective. Indeed, while quantum mechanics has
been so far confirmed by plenty of experiments, we cannot exclude that someday it will
be disproved. If some experimental data were inconsistent with the quantum model that we
have for the experiment, would that however necessarily imply the breakdown of the whole
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Figure 2. Schematic representations of the space of joint distributions P(a, b)
(for fixed and finite number of possible inputs and outputs). L denotes the set of
correlations that admit a local model; it is a polytope and membership in L can be
decided using linear programming [6, 7]. NL is the global set that contains all (in
particular non-local) correlations; it is again a polytope. The region accessible to
quantum mechanics is Q. The quantum set is not a polytope, i.e. it does not have
a finite number of extreme points. As represented in the figure, Q contains L and
is a proper subset of NL. See [9] or [10] for more details.

quantum formalism? How could one exclude that there is no other quantum model explaining
the observed data? The problem then is to establish experimentally testable conditions that can
rule out the whole quantum structure, in a similar fashion as Bell’s inequalities do for the locally
causal model. In this context, one is again confronted with the problem of characterizing the
constraints on correlations imposed by the quantum formalism.

One of the first researchers to study the characterization of quantum correlations was
Tsirelson in 1980 [11]. Tsirelson got several important results for the case of measurements
with binary outcomes [9]; most notably he derived the maximal quantum violation of
the Clauser–Horne–Shimony–Holt (CHSH) inequality [12]. More recently, the problem has
attracted the interest of several researchers working in QIS [13]. Among the latest contributions,
we point out the work of Wehner [14], who showed that part of Tsirelson’s findings could be
implemented using a relatively new numerical tool called semidefinite programing (SDP). A
short introduction to this technique is given in appendix A, more details can be found in [15].
Apart from Wehner’s paper, there are several other papers using SDP techniques to bound the
set of quantum correlations [16, 17]. Most of these results deal with the case of two-outcome
measurements.

In a recent work [18], we introduced a hierarchy of SDP tests to check if a given behavior
admits a quantum representation; this hierarchy is similar in spirit to some existing SDP
hierarchies for the characterization of the set of separable states [19, 20]. Compared to previous
constructions, our method is completely general as it can be applied to any number of parties,
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measurements and outcomes, and is independent of the dimension of the quantum systems. In
this work, we explore further the approach introduced in [18].

The basic idea behind our method is presented in section 3. Instead of directly searching for
a quantum state and measurement operators reproducing a given behavior—a computationally
highly difficult task, if not impossible if the dimension of the system is unbounded—we consider
instead a family of weaker conditions. Each of our conditions amounts to verify the existence
of a positive semidefinite matrix whose structure depends on the general algebraic properties
satisfied by quantum states and measurement operators. If one of our conditions is not satisfied,
we can immediately conclude that the given behavior is not quantum. In section 4, we show that
our family of tests can be organized as an infinite hierarchy of increasingly stronger conditions.
We prove that in the asymptotic limit, our hierarchy is complete in the sense that any behavior
that satisfies all the conditions in the hierarchy necessarily has a quantum representation in terms
of commuting measurements. We show further that in some cases it is possible to conclude that
a behavior is quantum after a finite number of steps only. We provide a criterion to detect when
such a situation arises, and we explain how to reconstruct in this case explicit quantum states
and measurement operators reproducing the given behavior. Based on these latter results, we
then show how a slight modification of our tests allow us to reduce the problem of deciding if
a behavior has a quantum representation with quantum systems of finite dimension d to a rank
minimization problem. Unfortunately, and contrary to SDP, there are no efficient algorithms to
solve rank-minimization problems. In section 5, we present several applications of our method.
We use it in particular to put upper bounds on the quantum violation of various Bell inequalities.
We conclude with a discussion and some open questions in section 6.

2. Definitions

2.1. Measurement scenario

We consider measurement scenarios as illustrated in figure 1. We assume that outputs
corresponding to different inputs are labeled in a distinct way. Each output, say a of Alice,
is thus uniquely associated to a single input X (a). We denote by A the set of all outputs of Alice
and by B the set of all outputs of Bob. The inputs of Alice may be viewed as disjoint subsets
of A, and those of Bob as disjoints subsets of B. A measurement scenario is thus specified by a
quadruple (A, B,X ,Y), where X and Y are partitions of A and B, respectively.

The measurement scenarios that we consider in this paper always involve a finite number
of inputs and outputs, i.e. A and B are finite sets. A behavior P thus consists of a finite set
of |A| × |B| joint probabilities: P = {P(a, b) : a ∈ A, b ∈ B}. For instance, in the case where
Alice and Bob have each a choice between s different inputs that each yield one out of d outputs,
a behavior consists of s2

× d2 joint probabilities. Except when otherwise mentioned, we assume
in the remaining of the paper that a measurement scenario (A, B,X ,Y) and a behavior P have
been specified. Our aim is to determine if P represents a possible quantum process.

2.2. Quantum behaviors

Definition 1. The behavior P is a quantum behavior if there exists a pure state |ψ〉 in a Hilbert
space H, a set of measurement operators {Ea : a ∈ A} for Alice, and a set of measurement
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operators {Eb : b ∈ B} for Bob, such that for all a ∈ A and b ∈ B

P(a, b)= 〈ψ |Ea Eb |ψ〉 , (1)

with the measurement operators E satisfying

1. E†
a = Ea and E†

b = Eb (hermiticity),

2. Ea Eā = δaā Ea if X (a)= X (a′) and Eb Eb̄ = δbb̄ Eb if Y (b)= Y (b′) (orthogonality),

3.
∑

a∈X Ea = 11 and
∑

b∈Y Eb = 11 (completeness),

4. [Ea, Eb] = 0 (commutativity).

The set of all quantum behaviors will be denoted by Q.

The first three properties are necessary to ensure that the operators Ea and Eb are projectors
and define proper measurements. The fourth property simply expresses the fact that Alice and
Bob perform separated measurements on the global state |ψ〉.

Note that more generally we could have defined a quantum behavior in terms of a mixed
state ρ rather than a pure one and in terms of general measurements, also known as positive
operator valued measures (POVM) [1], rather than projective ones. But remark also that in our
definition we put no restrictions at all on the dimension of the Hilbert space. Since any general
measurement on a given Hilbert space can be viewed as a projective measurement on a larger
Hilbert space, and any mixed state ρ can be viewed as a subsystem of a larger system in a pure
state |ψ〉 [1], the above definition turns out to be completely general.

Property 3 implies that the marginal probabilities P(a)=
∑

b∈Y P(a, b) and P(b)=∑
a∈X P(a, b) are well defined and independent of what is measured on the other side (i.e.

P satisfies the no-signaling constraints). This also implies that in the above definition there
is some redundancy in the specification of the operators {Ea : a ∈ A} of Alice since any
one of them can be written as the identity minus the other ones. To simplify further the
definition above, select an output aX ∈ X for each input X and introduce the reduced output
sets X̃ = {a : a ∈ X, a 6= aX} and Ã = ∪X X̃ . Introduce analogous sets Ỹ and B̃ for Bob. The
following definition is then equivalent to definition 1.

Definition 2. The behavior P is a quantum behavior if there exists a pure (normalized) state
|ψ〉 in a Hilbert space H, a set of measurement operators {Ea : a ∈ Ã} for Alice, and a set of
measurement operators {Eb : b ∈ B̃} for Bob such that for all a ∈ Ã and b ∈ B̃

P(a)= 〈ψ |Ea|ψ〉,

P(b)= 〈ψ |Eb|ψ〉, (2)

P(a, b)= 〈ψ |Ea Eb|ψ〉,

with the measurement operators satisfying

1. E†
a = Ea and E†

b = Eb (hermiticity),

2. Ea Eā = δaā Ea if X (a)= X (a′) and Eb Eb̄ = δbb̄ Eb if Y (b)= Y (b′) (orthogonality),

3. [Ea, Eb] = 0 (commutativity).

It is clear that any behavior satisfying definition 1 also satisfies definition 2. The converse
statement is also true. Indeed given sets of operators {Ea : a ∈ Ã} and {Eb : b ∈ B̃} satisfying
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definition 2, define the missing operators EaX and EbY through EaX = 11 −
∑

a∈X̃ Ea and EbY =

11 −
∑

b∈Ỹ Eb. It is then easy to see that the now-complete sets {Ea : a ∈ A} and {Eb : b ∈ B}

satisfy definition 1.
Before concluding this subsection, note that when dealing with finite dimensional Hilbert

spaces, one tends to associate a tensor product structure to separated measurements. This leads
to another set Q ′ of quantum behaviors, possibly equivalent to Q, and defined as follows.

Definition 3. The behavior P belongs to the set of quantum behaviors Q ′ if there exists a pure
state |ψ〉 in a composite Hilbert space HA⊗HB, a set of measurement operators {Ea : a ∈ A}

for Alice, and a set of measurement operators {Eb : b ∈ B} for Bob, such that for all a ∈ A and
b ∈ B

P(a, b)= 〈ψ |Ea ⊗ Eb|ψ〉, (3)

with the measurement operators E satisfying

1. E†
a = Ea and E†

b = Eb (hermiticity),

2. Ea Eā = δaā Ea if X (a)= X (a′) and Eb Eb̄ = δbb̄ Eb if Y (b)= Y (b′) (orthogonality),

3.
∑

a∈X Ea = 11A and
∑

b∈Y Eb = 11B (completeness).

Clearly, Q ′
⊆ Q. However, it is an open question whether these two sets are equal. In the

special case of finite dimensional Hilbert spaces, they turn out to be identical [21]. In this work,
we adopt definition 1, or equivalently definition 2, partly because it is much better tailored to
the structure of our construction. We will come back to the commutation versus tensor product
issue in section 6.1.

2.3. Sets of operators and sequences

In this section, we introduce a few other definitions that will be needed later on.
Let E denote the set of projectors appearing in definition 1, i.e. ε = {Ea : a ∈ A} ∪

{Eb : b ∈ B}, and Ẽ denote the set of projectors of definition 2 plus the identity, i.e. Ẽ =

11 ∪ {Ea : a ∈ Ã} ∪ {Eb : b ∈ B̃}.
Let O = {O1, . . . , On} be a set of n operators, where each Oi is a linear combination of

products of projectors in Ẽ . Thus O is a finite subset of the algebra generated by Ẽ . Note that
we can equally well define the set O in terms of E , since E and Ẽ are equivalent up to linear
combinations. Define F(O) as the set of all independent equalities of the form∑

i j

(Fk)i j〈ψ |O†
i O j |ψ〉 = gk (P) , k = 1, . . . ,m, (4)

which are satisfied by the operators Oi , where the coefficients gk(P) are linear functions of the
probabilities P(a, b):

gk(P)= (gk)0 +
∑
a,b

(gk)ab P(a, b) (5)

and where |ψ〉 is the state appearing in definition 2. These equations are the ones that formally
follow from the definition of the Oi s, the relation (2), and properties 1–3 of definition 2.
Each set of operators O define such a collection of equations. As an example of equation of
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the form (4), suppose that the set O contains the operators {Ok}
d
k=1 = {Eb Ea S : a ∈ X},

where S is some arbitrary operator in the algebra generated by E , and also contains
the operator Od+1 = Eb S. Then

∑d
k=1 O†

k Ok =
∑

a∈X(Eb Ea S)† Eb Ea S =
∑

a∈X S†Ea Eb Eb Ea S=∑
a∈X S† Eb Ea Eb S=S† Eb Eb S = O†

d+1Od+1, and thus
∑d

k=1〈ψ |O†
k Ok|ψ〉−〈ψ |O†

d+1Od+1|ψ〉=0.
Let a sequence S be a product of projectors in Ẽ . Examples of sequences are Ea and

Ea Ea′ Eb. Note that some sequences may correspond to the null operator, for instance, Ea E ′

a = 0
if a 6= a′, and X (a)= X (a′); in the following, when we speak of a sequence, we always mean
a non-null sequence. The length |S| of a sequence is the minimum number of projectors needed
to generate it. For instance |Ea Eb Ea| = |Ea Ea Eb| = |Ea Eb| = 2. By convention, the length of
the identity operator is |11| = 0. We define Sn to be the set of sequences of length smaller than
or equal to n (excluding null sequences). Thus

S0 = {11},

S1 = S0 ∪ {Ea : a ∈ Ã} ∪ {Eb : b ∈ B̃},

S2 = S0 ∪S1 ∪ {Ea Ea′ : a, a′
∈ Ã} ∪ {Eb Eb′ : b, b′

∈ B̃} ∪ {Ea Eb : a ∈ Ã, b ∈ B̃},

S3 = . . . .

It is clear that S1 ⊆ S2 ⊆ . . . , and that any operator Oi ∈O can be written as a linear
combination of operators in Sn for n sufficiently large.

3. Basic idea of our method

The following proposition associates to each set of operators O satisfying equations (4) a
condition that restricts the possible correlations that can arise between two quantum observers.

Proposition 4. Let O be a set of operators and F(O) the set of equations of the form (4)
satisfied by operators in O. Then, a necessary condition for a behavior P to be quantum is
that there exists a complex Hermitian n × n positive semidefinite matrix 0 � 0 whose entries
0i j satisfy ∑

i j

(Fk)i j0i j = gk(P), k = 1, . . . ,m. (6)

Moreover, if the coefficients Fk and gk in (4) are real, we can take 0 to be real as well.

Proof. If P is quantum, there exist a state |ψ〉 and projectors Ea and Eb as in definition 2, and
therefore there also exist operators Oi satisfying the relations (4). Then simply define the entries
of the matrix 0 through

0i j = 〈ψ |O†
i O j |ψ〉. (7)

Clearly, 0 satisfies (6). Moreover, it is positive semidefinite since for all v ∈ Cn

v†0v =

∑
i j

v∗

i 0i jv j =

∑
i j

v∗

i 〈ψ |O†
i O j |ψ〉v j = 〈ψ |V †V |ψ〉> 0, (8)

where V =
∑

j v j O j .
If the coefficients Fk and gk in (1) are real, redefine 0 as (0 +0∗) /2. Then 0 still is positive

semidefinite and satisfies (6). �
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Any n × n positive semidefinite matrix 0 satisfying the linear constraints (6) will be called
a certificate associated to O. As an illustration, we now give two examples of application of
proposition 4.

Example 1. Consider a measurement scenario where Alice has a choice between two
measurements, X = 1 or 2, to perform on her subsystem, and where both measurements yield
binary outcomes with values ±X . Likewise, Bob has a choice between two measurements,
Y = 3 or 4, with outcomes ±Y .

The single-party measurement averages CX = P(+X)− P(−X) and CY = P(+Y )−
P(−Y ) together with the two-party correlation functions CXY = P(+X,+Y )+ P(−X,−Y )−
P(+X,−Y )− P(−X,+Y ) fully determine the response of the joint system of Alice
and Bob. The observed data are thus characterized by the eight numbers {C1,C2,C3,

C4,C12,C13,C23,C24} which are equivalent to the knowledge of the entire set of probabilities
P(±X,±Y ).

Criterion 5. If the data observed by Alice and Bob represent the response of a quantum system,
there exists a real symmetric 5 × 5 positive semidefinite matrix 0 � 0 of the form

0 =


1 C1 C2 C3 C4

1 u C13 C14

1 C23 C24

1 v

1

 , (9)

where u and v are unspecified entries. (We have only given the upper triangular part of 0 since
it is symmetric.)

Proof. If the data observed by Alice and Bob represent the response of a quantum system, there
exist a state |ψ〉, two projectors E±X associated to each of the two measurements X = 1, 2 of
Alice and two projectors E±Y associated to each of the two measurements Y = 3, 4 of Bob. Let
O = {σ0, σ1, . . . , σ4}, where σ0 = 11 is the identity operator and σi = E+i − E−i (i = 1, . . . , 4). It
is easily verified from equations (1) and properties 1–4 that these operators satisfy the equalities

〈ψ |σ
†
i σi |ψ〉 = 1 i = 0, . . . , 4, (10)

〈ψ |σ
†
0 σi |ψ〉 = Ci i = 1, . . . , 4, (11)

〈ψ |σ
†
i σ j |ψ〉 = Ci j i = 1, 2; j = 3, 4, (12)

which are the counterparts of equations (4). It immediately follows that the associated 5 × 5
matrix 0i j = 〈ψ |σ

†
i σ j |ψ〉 has the form (9). It can be taken real if we further redefine 0 as

(0 +0∗)/2. �

Example 2. Consider the case where Alice and Bob have a choice between s different
measurements that each yield one out of d possible outcomes. The s measurements of Alice
are labeled X = 1, . . . , s and her m = s × d possible outcomes are labeled a = 1, . . . ,m, where
outcomes in the range 1 + (k − 1) d, . . . , kd belong to the measurement X = k. Analogously,
the s measurements of Bob are labeled Y = s + 1, . . . , 2s and his m = s × d outcomes are
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b = m + 1, . . . , 2m, where again outcomes in the range 1 + (k − 1)d, . . . , kd belong to the
measurement Y = k. This measurement scenario is characterized by the m2 joint probabilities
P(a, b). ut

Criterion 6. If the set of m2 probabilities P(a, b) admits a quantum representation, there exists
a 2m × 2m real symmetric positive semidefinite matrix 0 � 0 of the form

0 =

(
Q P
PT R

)
, (13)

where the submatrix P is the m × m table of probabilities with entries Pab = P(a, b), and where
the submatrices Q and R satisfy

Qaa′ = δaa′ P(a), if X (a)= X (a′), (14)

Rbb′ = δbb′ P(b), if Y (b)= Y (b′). (15)

Proof. If the measurement scenario is a quantum measurement scenario, there exist a quantum
state |ψ〉, m projectors Ea for Alice, and m projectors Eb for Bob satisfying the properties
of definition 1. Consider the set O = E = {E1, . . . , Em, Em+1, . . . , E2m} consisting of the m
operators of Alice and the m ones of Bob. They satisfy the equalities

〈ψ |Ea Eb|ψ〉 = P(a, b),

〈ψ |Ea E ′

a|ψ〉 = δaa′ P(a), if X (a)= X (a′), (16)

〈ψ |Eb E ′

b|ψ〉 = δbb′ P(b), if Y (b)= Y (b′),

as implied by equations (1) and property 2. It immediately follows that the certificate 0
associated to O has the form (13). ut

Note that the matrix (13) can be thought of as a table of probabilities, where 0i j is the
probability to obtain the two outcomes i, j ∈ {1, . . . , 2m}. The only entries of this matrix
which are not specified are the entries 0aa′ = Qaa′ associated to different measurements of
Alice, X (a) 6= X (a′), and the entries 0bb′ = Rbb′ associated to different measurements of Bob,
Y (b) 6= Y (b′). This is coherent with our interpretation of 0 since in a quantum scenario these
entries correspond to non-commuting measurements performed on the same subsystem and are
thus not jointly observable. Nonetheless, if the correlations P(a, b) have a quantum origin it is
possible to assign a numerical value to these undetermined entries, namely 〈ψ |Ea Ea′|ψ〉 and
〈ψ |Eb Eb′|ψ〉

5, such that the overall matrix (13) is positive semidefinite.

3.1. Testing the existence of a certificate with SDP

Checking the existence of a certificate 0, such as the ones given in examples 1 and 2, can be
cast as a SDP. Indeed, it amounts to solving the following problem

maximize λ,

subject to tr
(
F T

k 0
)
= gk(P), k = 1, . . . ,m, (17)

0− λ11 � 0,

5 Or the real part of these expressions, if we take 0 real.
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which after some elementary manipulations can be put in the form (A.1). A positive solution
λ> 0 to the above problem implies that there exists a positive semidefinite matrix 0 � λI � 0
compatible with the linear constraints (6). A strictly negative solution λ < 0 means that any
matrix 0 compatible with (6) is necessarily negative definite and thus that the given behavior P
does not represent the outcome of a quantum experiment.

As mentioned in appendix A, there exist many available programs to solve problems of the
type (17). Such programs solve these problems both in their primal and dual forms. The dual
of (17) is

minimize
∑

k

ykgk(P),

subject to F(y)=

∑
k

yk F T
k � 0,

(18)∑
k

yktr(F T
k )= 1.

If a program returns a negative solution for the primal for a given behavior P∗, it also
yields a dual feasible point y such that

∑
k ykgk(P∗) < 0. This dual feasible point provides

a proof that the given behavior P∗ is not quantum; it can be interpreted as a quantum Bell
inequality violated by P∗ in the sense that

∑
k ykgk(P)> 0 is a linear inequality satisfied

by all quantum probabilities. Indeed, the coefficients gk(P) defined in (5) depend linearly
on the probabilities P(a, b), and thus the expression

∑
ykgk(P) is a linear expression in

the probabilities P(a, b). Moreover, from the second line of (18), we deduce that for all
behaviors P having a positive certificate 0 � 0, in particular, for all quantum behaviors, this
linear expression is positive:

∑
k ykgk(P)=

∑
k yktr(F T

k 0)= tr(F(y)0)> 0 since 0 � 0. The
behavior P∗, however, violates this inequality,

∑
k ykgk(P∗) < 0, which demonstrates that it

does not belong to Q.

3.2. Equivalence between certificates

Each setO of operators that we can write down yields a different condition satisfied by quantum
theory. However, not all conditions built in this way are independent, as the following lemma
shows.

Lemma 7. Let O and O′ be two sets of operators such that every operator in O′ is a linear
combination of operators in O. Then, the existence of a certificate 0 associated to O (for a
given P) implies the existence of a certificate 0′ associated to O′.

Proof. By hypothesis, every operator O ′

i ∈O′ can be written as O ′

i =
∑

k Cik Ok , where Ok ∈O.
Define then 0′

i j ≡
∑

kl C∗

ki0klCl j . It is clear that 0′ satisfies the equalities (6) associated to O′,
given that 0 satisfies the ones associated to O. We also have that 0′

= C†0C � 0, and thus 0′

is a certificate associated to O′. �

The criterion of example 2 for s = 2 and d = 2, for instance, is equivalent to the one
of example 1, because the set of eight operators {E+1, E−1, E+2, E−2, E+3, E−3, E+4, E−4} is
linearly equivalent to the set of five operators {σ0, σ1, σ2, σ3, σ4}.

In numerical implementations, we have of course always interest to use a criterion based
on a set O of linearly independent operators so as to minimize the size of the matrices involved.
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Note also that to check systematically all the conditions that follow from our approach, it is
sufficient to check the ones associated with the sets Sn defined in section 2.3 since they generate
by linear combinations all other possible operators. This point is made more precise in the next
section.

4. A hierarchy of necessary conditions

Motivated by the above lemma, define a certificate of order n, denoted 0n, as a certificate
associated to the set of operators Sn. A certificate of order n is thus a |Sn| × |Sn| matrix and
to index its row and columns we will use symbols that are in direct correspondence with the
elements of Sn. Sequence operators S, Ea, Ea S, and 11 will be associated with row or column
indices, s, a, as, and 1, respectively. We define the length |s| of an index s to be the length |S| of
the corresponding sequence S. A certificate 0n is thus a matrix with entries {0n

s,t : |s|, |t |6 n},
which according to the proof of proposition 4 may be interpreted as 0n

s,t = 〈ψ |S†T |ψ〉 if P is a
quantum behavior.

From proposition 4 and the definition of the set Sn, we deduce that 0n is a real positive
semidefinite matrix that satisfies the linear equalities

0n
1,1 = 1 , 0n

1,a = P(a) , 0n
1,b = P(b) , 0n

a,b = P(a, b), (19)

for all a ∈ Ã and b ∈ B̃, and

0n
s,t = 0n

u,v, if S†T = U †V,
(
0n

s,t = 0, if S†T = 0
)
, (20)

for all |s|, |t |, |u|, |v|6 n. Here the relations S†T = U †V (or S†T = 0) are the ones that follow
from properties 1–3 of definition 2. For instance, 0n

ab,a = 0n
1,ab, and 0n

ab,a′ = 0 if X (a)= X (a′).
As we mentioned earlier, S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ . . ., and thus the family of certificates

01, 02, . . . , 0n, . . . , represents a hierarchy of conditions satisfied by quantum probabilities,
where each condition in the hierarchy is stronger than the previous ones. Moreover, since in the
limit n → ∞ the linear span of Sn coincides with the entire algebra of operators generated by
Ẽ , this hierarchy embraces, according to lemma 7, all the conditions that can be built from our
approach. The strategy that we propose to verify the quantum origin of a given behavior P is
thus the following. Check first if there exists a certificate 01 of order 1 associated to P . If there
is no such certificate, we can conclude that the behavior P is not quantum, otherwise check the
existence of a certificate 02 of order 2. Repeat the procedure with certificates of increasing order
as long as the behavior P satisfies the previous tests.

A geometrical interpretation of our hierarchy is given in figure 3, where Qn denotes the set
of all behaviors P for which there exists a certificate of order n.

4.1. Sufficiency of the hierarchy

We now show that our hierarchy is complete in the sense that limn→∞ Qn
= Q or in other words

that any non-quantum behavior P necessarily fails one of our conditions at some step in the
hierarchy.

Theorem 8. Let P be a behavior such that there exists a certificate 0n of order n for all n > 1.
Then P belongs to Q.
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Q

Q1
Q2

Q3

Figure 3. Geometrical interpretation of our hierarchy. Q is the set of quantum
behaviors. Qn denotes the set of all behaviors for which there exists a certificate
of order n. Testing the existence of a certificate of order n amounts to determine
if a given behavior P belongs to Qn. Certificates of higher order provide a more
accurate approximation of the quantum set Q, but are more demanding from a
computational point of view.

Proof. The proof proceeds in two steps. We first show that the sequence of certificates0n admits
a proper limit limn→∞ 0

n
→ 0∞. We then construct from the matrix 0∞ a quantum state and

quantum operators acting on a (possibly infinite-dimensional) Hilbert space H that reproduce
the behavior P .

Note first, as shown in appendix B, that all the entries {0n
s,t : |s|, |t |6 n} of the matrices 0n

are bounded by 1, i.e. |0n
s,t |6 1. Now, complete each matrix 0n with zeros to make it an infinite

matrix 0̂n with entries {0̂n
s,t : |s|, |t | = 0, 1, . . .}; we can then view the matrices 0̂n as infinite

vectors in l∞ (the normed space of all bounded sequences u = (u1, u2, . . .), with norm given by
‖u‖∞ = supi |ui |). As the sequence {0̂n : n = 1, 2, . . .} belongs to the unit ball of l∞, it admits,
by the Banach–Alaoglu theorem, a subsequence {ni} that converges in the weak-∗ topology to
a limit 0̂ni → 0∞ when i → ∞ [22]. This implies in particular pointwise convergence, i.e.

lim
i→∞

0̂ni
s,t → 0∞

s,t , (21)

for all s, t . From the pointwise convergence, we deduce that 0∞ satisfies equations (19) and (20)
for all s, t, u and v. Moreover, let 0̂n

N denote the submatrix of 0̂n corresponding to the entries
{0̂n

s,t : |s|, |t |6 N }. Since 0̂n
N � 0 for all n and N , (21) implies that 0∞

N � 0 for all N = 1, 2, . . . .
In the remainder of the proof, we construct from the matrix 0∞ a state |φ〉 and operators

{Êa : a ∈ Ã} and {Êb : b ∈ B̃} satisfying the properties of definition 2.
The fact that 0∞

N � 0 for all N implies that there exists an infinite family of vectors
{|vs〉 : |s| = 0, 1, 2, . . .} whose scalar products reproduce the entries of 0∞, i.e.

0∞

s,t = 〈vs|vt〉 (22)

for any s, t of length |s|, |t | = 0, 1, 2 . . . . One way to establish this fact is through a sequential
Cholesky decomposition of the matrices 0∞

N [23].
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We now take as our Hilbert spaceH the vector space spanned by the vectors |vs〉 and define,
for all a ∈ Ã, projectors Êa as follows

Êa = proj (span {|vas〉 : |as| = 1, 2, . . .}) (23)

where proj(V ) is the projector on the subspace V . Since (Ea S)† Ea′ T = δa,a′ S† EaT when
X (a)= X (a′), it follows from (20) and (22) that 〈vas|va′t〉 = δa,a′〈vs|vat〉, which in turn implies
that

Êa|va′s〉 = δaa′|vas〉, if X (a)= X (a′). (24)

An immediate consequence of this is that

Êa Êa′ = δaa′ Êa, if X (a)= X (a′), (25)

i.e. that the operators {Êa : a ∈ X̃} form an orthogonal set of projectors. They thus satisfy
properties 1 and 2 of definition 2.

Let us now examine the action of Êa over an arbitrary vector |vs〉. We find that

Êa|vs〉 = Êa|vas〉 + Êa (|vs〉 − |vas〉)

= |vas〉 + Êa (|vs〉 − |vas〉)

= |vas〉. (26)

The last identity follows from the fact that 〈vat |vs〉 − 〈vat |vas〉 = 0 which can be deduced
from (20), (22), and the relation (EaT )† S − (EaT )† Ea S = 0. Property (26) implies in particular
that

Êa|v1〉 = |va〉. (27)

By repeating the above construction, we can build operators {Êb : b ∈ B̃} for Bob that satisfy
properties analogous to (25)–(27). From (26), (27) and the corresponding relations for Bob, we
deduce by induction that

Ŝ|v1〉 = |vs〉 (28)

for any sequence Ŝ of length |Ŝ| = 0, 1, 2, . . . of the projectors {Êa : a ∈ Ã} and {Êb : b ∈ B̃}.
Combining equations (22) and (28), we find that

0∞

s,t = 〈φ|Ŝ†T̂ |φ〉, (29)

where we have defined |φ〉 = |v1〉. Note that |φ〉 is a normalized vector since 〈φ|φ〉 = 0∞

1,1 = 1.
Equations (29) together with (19) imply that the state |φ〉 and the operators Êa and Êb satisfy
equations (2).

It now remains to verify property 3, i.e. that [Êa, Êb] = 0 . From the relation (Ea S)† EbT −

(Eb S)† EaT = 0, the properties (20) satisfied by 0∞ and (29), we deduce that

〈φ|Ŝ†[Êa, Êb]T̂ |φ〉 = 0 (30)

for any sequences Ŝ, T̂ of length |Ŝ|, |T̂ | = 0, 1, 2, . . . As the vectors Ŝ|φ〉 and T̂ |φ〉 span the
support of the operators Êa and Êb, equation (30) implies that the commutator [Êa, Êb] is equal
to zero. �

Corollary 9. Q is a closed set.

Proof. From theorem 8, we know that Q =
⋂

∞

i=1 Qi . As each of the sets Qi is closed, its infinite
intersection must be a closed set as well. �
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4.2. Stopping criteria and extraction of quantum state and measurements

Our hierarchy of conditions characterizes the quantum set Q in an asymptotic limit. Testing
only a finite number of our conditions may at most allow us to conclude that a given behavior
does not belong to Q (more precisely, testing the conditions up to the nth step in the hierarchy
allows us to detect all behaviors that do not belong to Qn). We now show that in certain cases,
it is possible to conclude at a finite order n in the hierarchy that a given behavior P does belong
to Q. In this case, we can also recover from the certificate 0n the quantum state |ψ〉 and the
measurements Ea and Eb reproducing the behavior P .

Let 0n be a certificate of order n associated to the behavior P . For any given pair of
inputs X and Y , consider the set of indices SXY = {s : |s|6 N − 1} ∪ {s = abs ′ : a ∈ X̃ , b ∈ Ỹ ,
|s|6 N }, and define 0n

X,Y as the submatrix of 0n with entries {0n
s,t : s, t ∈ SX,Y }. If

rank(0n
X,Y )= rank(0n), (31)

for all X, Y , then we will say that the certificate 0n has a rank loop.

Theorem 10. A behavior P has a quantum representation of finite dimension d if and only if P
admits, for some finite N, a certificate 0N of order N with a rank loop, and rank(0N )6 d.

Here, by a representation of dimension d, we mean that there exist a quantum state |9〉 ∈H
and a set of operators {Ea, Eb ∈ B(H)} satisfying the conditions of definition 2 for some Hilbert
space H of finite dimension dim(H)= d. We denote by Qd the set of all behaviors having a
d-dimensional quantum representation.

Proof. We first prove that if P has a finite dimensional representation, there exists a certificate
of order n with a rank loop. As P ∈ Qd , there exist a state |φ〉 ∈H and projective measurements
Eµ ∈ B(H), as in definition 2, for some Hilbert space of dim(H)= d . The matrix 0n with
entries 0n

s,t = 〈φ|S†T |φ〉 for all S, T ∈ Sn is clearly a certificate of order n associated to P .
Because Sn ⊆ Sn+1, 0n is a submatrix of 0n+1 for any n, and thus rank(0n)6 rank(0n+1). On
the other hand, the space generated by the vectors S|φ〉, S being an arbitrary sequence, has
a dimension less or equal than dim(H)= d and therefore rank(0n)6 d for all n. These two
conditions imply that there exists an N such that rank(0N )= rank(0N+1)≤ d. It follows that
rank(0N+1

X,Y )= rank(0N+1), for all X, Y , and thus that 0N+1 has a rank loop6.
Let us now prove the converse statement. Suppose thus that P admits a certificate 0N with

a rank loop and satisfying rank(0N )= d. Similarly to section 4.1, we can perform a Cholesky
decomposition of 0N to write 0N

st = 〈vs|vt〉 for some finite set of vectors {|vs〉 : |s|6 N }, whose
span is a vector space of dimension at most d . Again as in section 4.1 we can then define a set
of operators Â = {Êa : a ∈ Ã} as

Êa = proj (span {|vas〉 : |as|6 N }) . (32)

It is easy to see that these projector operators satisfy (25), and using the same arguments as in
section 4.1, one can see that they also fulfill

Êa|vs〉 = |vas〉, (33)

6 What we have proven is that P has a, in general, complex rank looped certificate. To see that P also has a
real rank looped certificate, note that, for any set n, Re(0n) is also a valid certificate for P . On the other hand,
rank(Re(0n)) 6 2 · dim(H), so the previous arguments can be applied to Re(0n).
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for |as|6 N . In an analogous way, we build operators B̂ = {Êb : b ∈ B̃} for Bob with the same
properties. It is then immediate that 〈v1|Ŝ†T̂ |v1〉 = 0N

st , for sequences |Ŝ|, |T̂ |6 N . In particular,
〈v1|Êa Êb|v1〉 = P(a, b). The operators in Â and B̂ thus satisfy equation (2) and conditions 1
and 2 of definition 2. It remains to show that they also satisfy condition 3, i.e. commutativity.

Take any quadruple a, b, X, Y such that a ∈ X̃ , b ∈ Ỹ , and consider the set of indices SXY

defined above theorem 10. Then, for any pair of indices s, t ∈ SXY ,

〈vs|Êa Êb − Êb Êa|vt〉 = 0N
as,bt −0

N
bs,at = 0 . (34)

The first equality in (34) follows from the fact that |as|, |at |, |bs|, |bt |6 N . To see that
|as|6 N , for instance, note that from the definition of SXY , either |s|6 N − 1 (and then
|as|6 N ), or s = a′b′s ′ with a′

∈ X̃ , b′
∈ Ỹ and |s|6 N (and then since a ∈ X̃ , |as| =

|aa′b′s ′
| = |δa,a′a′b′s ′

|6 N ). The second equality in (34) comes from the constraints imposed
on the certificate 0N by the operator identity S† Ea EbT − S† Eb EaT = 0. On the other hand,
condition (31) implies that

span({|vs〉 : |s|6 N })= span({|vs〉 : S ∈ SXY }). (35)

Since the first set of vectors spans the support of the operators Êa, Êb, relation (34) implies that
Êa, Êb commute. As this holds for any quadruple a, b, X, Y , it follows that P ∈ Qd . �

Corollary 11. Let P be a behavior corresponding to a bipartite system where Alice’s (Bob’s)
measurements have dA (dB) possible outcomes and such that each of the probabilities satisfies
P(a, b) > 0. Let 02 be a certificate of order 2 compatible with this behavior. Then, rank(02)=

dAdB implies that P ∈ Qd , with d = dAdB .

Proof. If P(a, b) > 0,∀a ∈ A,∀b ∈ B, then, for any pair of measurements X, Y , the dAdB

vectors {|vs〉 : s = 11, Ea, Eb, Ea Eb : a ∈ X̃ , b ∈ Ỹ } can be shown to be linearly independent.
This, together with the fact that the rank of the whole matrix is equal to dAdB , implies that 02

has a rank loop. ut

The above theorem says that if our SDP outputs a certificate 0 with a rank loop, we know
that P belongs to Qd , with d = rank(0). Moreover, from the proof of theorem 10 it is not
difficult to see that we can even reconstruct the state |ψ〉 and measurements Ea and Eb that
yield this finite-dimensional representation.

Given a behavior P admitting a quantum representation of dimension d , there may be,
however, different certificates of order n compatible with P , including some without rank loops.
We have no guarantee that our SDP will output a certificate that has a rank loop, and thus in
general we cannot guarantee that our hierarchy of SDP tests will stop after a finite number of
iterations.

In view of this, it would be useful to incorporate some rank minimization techniques in the
implementation of our hierarchy. That is, when checking the existence of certificates of order
n, we would like as well to minimize the rank of the corresponding matrices. Indeed, let 0̂n be
the certificate of order n for P with minimum rank, and consider the series 0̂1, 0̂2, 0̂3, . . . .
If rank(0̂n+1) 6= rank(0̂n), then rank(0̂n+1)> rank(0̂n)+ 1. This, together with the fact that
rank(0̂n)6 d for all n, implies that there exists some N 6 d such that rank(0̂N+1)= rank(0̂N ).
On the other hand, for all X, Y

rank(0̂N )6 rank(0̂N+1
X,Y )6 rank(0̂N+1), (36)

and so rank(0̂N+1)= rank(0̂N+1
X,Y ), i.e. 0̂N+1 has a rank loop.
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Unfortunately, there are no known efficient methods to solve rank minimization of positive
semidefinite matrices with linear constraints. There are, however, heuristics [24] that typically
arrive at the optimal solution in just a few iterations.

5. Applications

In this section, we present several applications of our method. We first derive simple analytic
conditions that are satisfied by all quantum probabilities involving two measurements with two
possible outcomes. We then show how to apply our method to establish upper bounds on the
quantum violation of Bell inequalities.

From a general perspective, the hierarchy of necessary conditions that we have introduced
represents a systematic way of getting better and better approximations to the set of quantum
correlations. Moreover, these approximations are nicely characterized in terms of semidefinite
constraints. Our method can thus be useful in any kind of optimization problem over this set.
This is particularly true when we want to optimize the violation of Bell inequalities since they
are linear functions of the behaviors and thus the entire optimization problem can be cast as
a SDP.

Although the applications that we present here are restricted to a bipartite scenario, our
method can also be applied to a multipartite scenario, e.g. see [25].

5.1. Analytic conditions for quantum behaviors with two inputs and two outputs

Consider the measurement scenario described in example 1 of section 3, involving two
measurements with two possible outcomes for each observer. As we showed, a necessary
condition for a behavior to be quantum in this scenario is the existence of a positive semidefinite
matrix of the form (9). This condition corresponds to the first one in our hierarchy and thus
characterize the set of behaviors Q1. In the following, we provide an analytic characterization
of this set. The conditions that we obtain can be interpreted as the quantum analogues of Bell
inequalities.

We make use of the following two lemmas:

Lemma 12. (Schur’s lemma) [23] Let M be a matrix such that

M =

(
P Q

QT R

)
� 0, (37)

with P � 0. Then, M � 0 if and only if R − QT P−1 Q � 0.

Lemma 13. Let Mz,t be a real symmetric matrix of the form

Mz,t =


1 z x1 x2

1 x3 x4

1 t
1

 , (38)

with |xi |6 1, i = 1, 2, 3, 4. Let f (x1, x2, x3, x4)= arcsin(x1)+ arcsin(x2)+ arcsin(x3)−

arcsin(x4). Then, there exists a pair of values (z, t) such that Mz,t � 0 if and only if

| f (x1, x2, x3, x4)|6 π (39)

for all possible permutations of x1, x2, x3, x4.
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Proof. See appendix E. �

Now, apply Schur’s lemma to matrix (9), taking the upper block to be P = 1 � 0. It then
follows that the positivity of (9) is equivalent to the positivity of the matrix 0 given by

0′
=


1 − C2

1 u − C1C2 C13 − C1C3 C14 − C1C4

1 − C2
2 C23 − C2C3 C24 − C2C4

1 − C2
3 v− C3C4

1 − C2
4 .

 . (40)

Note that we can restrict our analysis to the case where all the elements in the diagonal are
strictly positive. Indeed, if a diagonal element is equal to zero, the corresponding measurement,
say by Alice, is deterministic, i.e. it always returns the same outcome. Then, Alice is left with
one effective measurement (at most) and there always exists a classical, hence a quantum, model
for this type of scenario. Suppose thus that all the diagonal elements of 0′ are different from
zero. Multiplying 0′ on both sides by the diagonal matrix Mi i = (1 − C2

i )
−1/2 (i = 1, . . . , 4), we

obtain a matrix of the same form as the one of lemma 13. Applying this lemma, we conclude,
together with the previous observation, that a necessary and sufficient condition for a behavior
to belong to Q1 is either that there exist an i such that C2

i = 1 or that∣∣∣∣∣∣
∑
i, j

arcsin

 Ci j − CiC j√
(1 − C2

i )(1 − C2
j )

 − 2 arcsin

 Ckl − CkCl√
(1 − C2

k )(1 − C2
l )

∣∣∣∣∣∣6 π, (41)

for all k = 1, 2 and l = 3, 4. This condition is of course only a necessary condition for quantum
behaviors.

Note that a weaker necessary condition for a behavior to be quantum follows from the
positivity of

0 =


1 u C13 C14

1 C23 C24

1 v

1

 , (42)

which is simply a submatrix of (9). A direct application of lemma 13 implies that a behavior
is quantum if |

∑
i j arcsin(Ci j)− 2 arcsin(Ckl)|6 π for all k = 1, 2, l = 3, 4. This condition,

which, as we said, is weaker than (41), had previously been obtained in [9, 26, 27].

5.2. Quantum violation of Bell inequalities

Bell inequalities are constraints satisfied by all behaviors that originate from classical non-
communicating observers. As mentioned in section 1, for a finite number of measurements
and outcomes, the set of behaviors achievable using classically correlated instructions (shared
randomness) defines a polytope, that is, a convex set with a finite number of extreme points (see
also figure 2). It can then alternatively be completely characterized by a finite number of facets,
which correspond to the well-known Bell inequalities [5]. A given behavior P thus admits a
local classical model if and only if it satisfies all the Bell inequalities. In the space of behaviors,
a Bell inequality can be viewed as a hyperplane that separates the space in two regions.
A generic Bell inequality can thus be written as

I (P)=

∑
a,b

cab P(a, b)6 IC, (43)
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where cab are the real coefficients defining the inequality and IC is the maximal value achievable
by local classical points (and in particular which is attained by the extreme points lying on the
facet defined by the Bell inequality).

Since the work of Bell [8], we know that some quantum behaviors are incompatible with a
local classical description, that is, that they violate a Bell inequality. This fact is often referred
to as quantum non-locality. In spite of many years of work on quantum non-locality, there are
no methods able to provide the maximal quantum violation of a general Bell inequality, or just
non-trivial upper bounds to it7. An important exception already mentioned in section 1 is the
(tight) bound derived by Tsirelson on the maximal violation of the CHSH inequality.

Since our hierarchy of necessary conditions provides better and better approximations to
the set of quantum correlations, it can be used to derive better and better upper bounds to the
quantum violation of a Bell inequality. Actually, our proof of completeness guarantees the
convergence to the maximal quantum value that we denote by IQ . That is, by maximizing
the value I (P) of a Bell inequality over the behaviors P(a, b) ∈ Qn admitting a certificate
of order n, one gets an upper bound In to IQ . Clearly, we have that I1 > I2 · · ·> In > · · ·> IQ

and limn→∞ In → IQ . Even while we are only able to prove convergence to the quantum value
in the asymptotic limit, the quantum value or a very good upper-bound to it can often already
be obtained for a small relaxation order n, as we show in the following.

The fact that Bell inequalities are linear functions of the joint probabilities P(a, b) signifies
that we can cast the computation of these upper bounds as SDP. Indeed, note that for any
certificate 0n, we can write the value I (P) of a Bell inequality as I (P)= tr(βn0

n), where
βn is a matrix whose elements are all zero but the entries corresponding to 0n

a,b. For instance, in
the case n = 1 one has (see (13)),

β1 =
1

2

(
0 C

CT 0

)
, (44)

where C is the matrix whose elements are the coefficients cab in (43) defining the Bell inequality.
Therefore the calculation of In amounts to solve the following SDP

maximize tr(βn0
n)

subject to tr
(
F T

k 0
n
)
= gk(P), k = 1, . . . ,m

0n
� 0.

(45)

In the remainder of this subsection, we illustrate this approach by applying it to several Bell
inequalities.

But before presenting these results, let us make two technical remarks. First, note that in
the above optimization problems, we can in general consider certificates that are intermediate
between, say, a certificate of order 1 and a certificate of order 2. Such a certificate would be
associated to a set of sequences of operators S satisfying S1 ⊂ S ⊂ S2 . For instance, we could
consider the set S1+AB = S1 ∪ {Ea Eb, : a ∈ Ã, b ∈ B̃} consisting of S1 together with all products
of one operator of Alice and one for Bob (while S2 also contains product of two operators
of Alice and product of two operators of Bob). The corresponding bound I1+AB would then
satisfy I1 6 I1+AB 6 I2. In some cases this bound might already be useful while requiring less
computational resources than I2. In the following, we will therefore also consider such bounds

7 Lower bounds to the maximal quantum violation can easily be obtained by searching specific states and
measurements that violate the inequality.
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Table 1. Upper bounds on the violation of the CGLMP inequality derived from
our construction. The local bound is equal to 2. The upper bound I1+AB is already
equal, up to numerical precision, to the lower bounds given in [29]. We also
provide the size of the certificates in each case. Note that the rank loop conditions
defined in section 4.2 are not applicable to certificates of order 1.

I1 I1+AB

d Value Matrix size Rank loop Value Matrix size Rank loop

2 2.8284 5 N/A 2.8284 9 Yes
3 3.1547 9 N/A 2.9149 25 Yes
4 3.2126 13 N/A 2.9727 49 Yes
5 3.2997 17 N/A 3.0157 81 Yes
6 3.3378 21 N/A 3.0497 121 Yes
7 3.3843 25 N/A 3.0776 169 Yes
8 3.4115 29 N/A 3.1013 225 Yes

based on intermediate certificates. The notation that we use is obvious, for instance I1+AB+AA′ B is
the bound associated with the set of sequence operators S1+AB+AA′ B = S1 ∪ {Ea Eb} ∪ {Ea E ′

a Eb}.
Note that the rank loop conditions derived in section 4.2 generalize to the case of intermediate
certificates, see appendix C.

The second technical remark is that, as shown in appendix D, the probabilities P(a, b)=

0n
a,b corresponding to a certificate 0n are guaranteed to be positive only for certificates of order

n > 2 (or more generally for certificates associated with set of operators S ⊇ S1+AB). Thus, when
we maximize, as in (45), a Bell inequality over all behaviors for which there exists a certificate
01 of order 1, it may so happen that the bound I1 that we obtain correspond to a solution
with negative probabilities. By explicitly adding to the SDP (45), the constraints 01

a,b > 0 that
probabilities must be positive8, we thus strengthen the upper bound I1. In the remainder of this
section, when we mention an upper bound obtained from a certificate of order 1, we always
refer to this strengthened version.

We start by analyzing the Collins–Gisin–Linden–Massar–Popescu (CGLMP) family of
Bell inequalities introduced in [28]. These inequalities are defined in a bipartite scenario where
the two observers can each make two measurements of d outcomes. We refer the reader to the
original reference for the detailed description of these inequalities. The inequality corresponding
to the case d = 2 is the CHSH inequality. The best-known lower bounds on the quantum
violation of these inequalities for d 6 8 are those given in [29]. The upper-bounds that we
obtained using our method are given in table 1. Note first that in the case d = 2 (CHSH) the first
certificate already provides the actual quantum value, which is equal to the Tsirelson bound.
For d larger than 2, the quantum value is recovered at the successive step corresponding to the
certificate 01+AB . This can be seen by noting that the upper-bounds I1+AB are equal to the lower
bounds given in [29]. Alternatively, one reaches the same conclusion by noting that the stopping
criteria based on rank loops presented in section 4.2 are satisfied. Thus, 01+AB , and therefore 02,
is already enough to get the maximal quantum violation of CGLMP inequalities (at least until
d = 8) and certificates 0n with n > 2 are redundant.

8 Adding such constraints leaves the optimization problem in a SDP form.
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Table 2. Upper bounds derived from our construction on the violation of the
inequality introduced in [30, 31]. The local bound is equal to 0. The upper
bound I1+AB+AA′ B is already equal, up to numerical precision, to the lower bound
obtained numerically for qutrits. We also provide the size of the certificates in
each case.

Upper bound Value Matrix size Rank loop

I1 0.3333 7 N/A
I1+AB 0.2653 16 No
I1+AB+AA′ B 0.2532 22 Yes

We have also considered other, perhaps less standard, Bell inequalities, like the one
presented in [30] (see also [31]) for the case in which Alice performs two measurements,
one of two outcomes and one of three outcomes, while Bob performs three two-outcome
measurements. The results are summarized in table 2. One can also get numerical lower bounds
for the maximal quantum violation for fixed dimension. In the case of qutrits, the derived
quantum violation is equal to 0.2532 [30, 31]. This is precisely the same value obtained when
checking the last certificate of table 2. This certificate then, or equivalently 03, already provides
a tight bound on the maximal quantum violation. The same conclusion follows again by studying
the rank of the matrices appearing in these certificates.

Finally, we also applied our techniques to the Froissard inequality, also referred to as I3322

inequality, given in [32, 33]. Again, we refer the interested reader to these references for the
explicit form of the inequality. The best-known quantum violation of this inequality is equal
to 0.25 in the case of qubit systems, while the classical value is equal to zero. By applying
our hierarchy of conditions to this inequality, one gets the upper bounds given in table 3. Note
that the values derived for 02 and 03 are quite close and that no rank loop is observed9. It
is remarkable that none of our upper bounds coincides with the best-known lower bounds on
the quantum violation, although they are very close to it. This may be because in the case
of this inequality our hierarchy approaches more slowly the quantum solution, assuming it to
be equal to 0.25. However, one cannot exclude that the maximal quantum violation of this
inequality is obtained for systems of dimension larger than two. Indeed, the existence of this
type of inequalities has recently been proven in [31, 34, 35]. Thus, a quantum violation close to
0.2509 is perhaps attainable beyond qubits.

6. Discussion and open questions

Characterizing the correlations attainable by quantum means is a fundamental problem in QIS
and, more generally, in quantum mechanics. To our knowledge, our construction represents the
only available tool to tackle this problem with full generality: it applies to any number of parties,
measurements and outcomes. Moreover, the first steps in our hierarchy are easily computable
since they correspond to SDPs of reasonable size. Our construction provides a systematic way
of getting better and better approximations to the set of quantum correlations and can be applied,
for instance, to identify correlations that do not admit a quantum representation, or to estimate
the maximum quantum violation of Bell inequalities.

9 Rank loops should be considered in a cautious way. Indeed it is sometimes difficult to numerically distinguish a
zero from a small eigenvalue.
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Table 3. Upper bounds on the violation of the I3322 inequality derived from
our construction. The local bound is equal to 0. Interestingly, none of our tests
coincides with the best-known lower bound on the quantum violation, obtained
for qubit systems. We also provide the size of the certificates in each case.

Upper bounds Value Matrix size Rank loop

I1 0.3333 7 N/A
I1+AB 0.2515 16 No
I2 0.25091 28 No
I3 0.25089 88 No

In this work, after having presented in detail the hierarchy of necessary conditions already
introduced in [18], we have (i) proved the completeness of the hierarchy, (ii) introduced a
criterion based on rank loops that can guarantee at a finite order in the hierarchy that a
set of joint probabilities is quantum, and we have shown in this case how to reconstruct
the quantum state and measurements reproducing these probabilities, (iii) presented several
examples illustrating the usefulness of the method. Although our results are described in the
bipartite case, they can easily be extended to the multipartite scenario. To conclude this work,
we would like to go back to the commutation versus tensor product issue briefly mentioned in
section 2.2, discuss the computational complexity of our approach, and then present several open
questions related to the set of quantum correlations achievable with finite dimensional Hilbert
spaces.

We mention that it is possible to generalize the hierarchy presented in this work and
our proof of convergence to other polynomial optimization problems with non-commutative
variables [36]. A similar generalization was also recently introduced in [37] to put upper-bounds
on the entangled value of quantum multi-player games. We also mention that an alternative proof
of convergence of our hierarchy is possible using a result of Helton and McCullough [38], as
noted in [37, 39].

6.1. Commutation versus tensor product

There are two possible ways to impose that Alice and Bob perform measurements on separated
systems: through the condition that their measurement operators commute, or through a tensor
product splitting of the whole Hilbert space. The two sets of quantum correlations Q and
Q ′ associated with each possibility are defined in section 2.2. Clearly, measurements that
have a product form commute with each other, and thus Q ′

⊆ Q. In the special case of
finite-dimensional systems, one can in fact show that both definitions are equivalent, i.e.
Q = Q ′ [21, 40] (see also [41]). For infinite-dimensional systems whether they are equivalent
or not is, at the moment of writing, an open question [21]. It is not even known if Q ′ is dense
in Q. (Note that the statement in [9] that the two sets are equivalent is actually unproven [40].)

One can debate which definition should be regarded as the proper one. Arguments in favor
of the tensor product structure are presented in [21]. Here, we have chosen commutativity as
this choice is consistent with the ethos adopted in this work. Indeed, our main objective is to
characterize the set of correlations compatible with the general structure of quantum theory,
but imposing as few additional constraints as possible: we impose no restrictions on states,
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measurements, or even on the Hilbert space dimension. In this spirit, it should then be pointed
out that there exist in quantum field theories algebras of local (in the sense of commuting)
observables that cannot be split in a tensor product structure10, yet in which it is possible to
investigate the correlations that can arise between two separated observers, and in particular to
study the amount by which Bell inequalities are violated [42]. By investigating the structure of
the set Q defined through commutativity, we are sure to include also these examples and thus
to deal with the most general correlations compatible with the quantum theory.

Of course, making the above distinction is only meaningful if Q and Q ′ happen to be
distinct. But note that actually most of the results of this work are independent of the definition
chosen. As Q ′

⊆ Q, all the necessary conditions satisfied by points in Q, in particular all the
ones constituting the hierarchy, are also valid for Q ′. The stopping criteria presented in section
4.2 are associated with correlations achievable with finite-dimensional spaces, for which we
know that Q = Q ′, and thus also apply to both cases. The unique distinction arises when we
consider the asymptotic behavior of our hierarchy: as our proof of convergence to Q explicitly
use infinite-dimensional systems, the hierarchy will also converge to Q ′ only if Q = Q ′ in the
most general setting. But for all practical applications of our method where only a finite number
of steps of the hierarchy are involved, in particular for all numerical applications, one choice of
definition or the other does not make any difference. For instance, all the results presented in
section 5 apply equally well to both cases.

Note that it is not surprising that the limit of the hierarchy tends to Q rather than Q ′, as
the space separation between Alice and Bob’s measurements appears in the hierarchy only in
the form of constraints associated to the commutativity of these local observables. For example,
since Ea Eb Ea′ = Ea Ea′ Eb, we impose that 0n

aba′ = 0n
aa′b for all n. If we insist that the hierarchy

should tend to Q ′ rather than Q, it will probably be necessary to add new constraints associated
to the tensor product structure. These constraints will have to reflect the (at the moment
unproven) differences, at the level of operator algebra, between the commutation and tensor
product case.

6.2. Complexity of the hierarchy

The computational complexity of our tests scales badly with the order n of the relaxation. For
instance, in a measurement scenario with s inputs and d outputs, it is not difficult to see that the
size of a certificate of order n is roughly (ds)n. The algorithms used to solve the SDPs associated
with such certificates have a running time that is polynomial in the size of the matrix defining
the SDP. Thus, using SDP to decide if a certificate of order n exists requires a time exponential
in n.

Note, however, that the numerical results presented in section 5.2 suggest that it might be
sufficient, at least for some families of measurement scenarios, to consider relaxations only
up to a bounded value n to characterize, or obtain an already good approximation, of the
quantum set. Indeed, in the examples that we considered, when maximizing the violation of
Bell inequalities we hit the quantum value, or obtained a very good upper-bound on it, already
at the second or third step in the hierarchy. The suggestion that a finite number of steps of

10 This result does not directly imply that Q 6= Q′ since it could happen that all the correlations obtained by
performing commuting measurements on states belonging to these spaces can also be realized in spaces with a
tensor product structure.
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the hierarchy might already characterize, or approximate well, the quantum region turns out
to be true in some particular case. For instance, for measurement scenarios with two outputs,
a result of Tsirelson [11] implies that deciding if a set of correlators (i.e. a quantity such as
the Ci j defined in example 1 of section 3) is quantum can exactly be decided through SDP, as
noted by Wehner [14]. The SDP considered by Wehner is a weaker version of the first step of
our hierarchy. In [43], the authors show how for a certain family of measurement scenarios,
corresponding to unique games, the quantum set can be well approximated through SDP. The
SDPs considered in [43] correspond again to the first step of our hierarchy11.

If all these results suggest that our construction might indeed provide an efficient
characterization of the quantum set for some particular quantum scenarios, we do not expect
this to be true in full generality, as it has recently been shown, at least in the tripartite case, that
calculating the maximal quantum violation of a Bell inequality is an NP-hard problem [44].

6.3. Finite dimensional quantum systems

In this work, we were mainly interested in characterizing the set of quantum behaviors without
any bound on the dimension of the Hilbert space. We now present several open questions linked
to the finite-dimensional case.

• Consider all possible quantum behaviors of d outcomes where the number of
measurements is arbitrary. Gill recently asked whether these correlations are attainable
by measuring d-dimensional quantum systems12. The answer to this question is no, as
shown in [34] for the case of three observers and in [31, 35] for bipartite systems.
Actually, no finite dimension is sufficient to generate the whole set of quantum correlations
of d outcomes for three parties, while the same result seems very plausible in the
bipartite case [31, 35]. Consider however a scenario where the number of measurements
is also finite. Are now all quantum correlations (exactly) attainable by measuring a finite
dimensional quantum system?

• Consider a measurement scenario with a finite number of inputs and outputs. It is easy
to see that in the tensor product scenario discussed in section 6.1, a quantum behavior
can be approximated arbitrarily well using finite-dimensional Hilbert spaces (see for
instance [37]). Does the same result hold in the commutative case? If yes, then combining
this result with the fact that Q ′

= Q for finite-dimensional systems, would imply that Q ′ is
dense in Q, and thus that our hierarchy converges to the quantum set Q ′ defined through
the tensor product structure.

• What is the structure of the set of quantum behaviors corresponding to a Hilbert space
of fixed dimension d? Very little is known in this case, we even do not known if the
corresponding quantum set is convex.

• In relation with the above question, it would be interesting to understand how to incorporate
in our hierarchy a bound on the Hilbert space dimension. It is in principle always possible
to decide if a behavior can be represented with a Hilbert space of given dimension through
SDP [31] using known techniques of polynomial optimization [45, 46]. The corresponding
SDPs, however, are very demanding from a computational point of view, much more

11 With the additional constraint, when maximizing the violation of Bell inequality, that the probabilities must be
positive, as mentioned in section 5.2.
12 See the open problem 26.a at http://www.imaph.tu-bs.de/qi/problems/problems.html.
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than the one obtained from our construction where we do not bound the dimension. Can
one modify our construction to design more efficient methods to approximate the set of
correlations corresponding to d-dimensional quantum systems?

As suggested by the results of section 4.2, a possibility would be to incorporate a bound on
the rank of our certificates. There are, however, to our knowledge no efficient methods to solve
SDPs with rank constraints. Is there any efficient way to relax these rank constraints to obtain
good approximations to the set of quantum correlations with finite dimension?

Acknowledgments

We thank B Tsirelson and R Werner for useful discussions and correspondence on the
commutation versus tensor product question, and T Ito and B Toner for pointing out to us the
possibility of an alternate proof of convergence of our hierarchy through the results of Helton
and McCullough. We acknowledge financial support from the EU project QAP (IST-FET FP6-
015848), from the Spanish MEC, under FIS2004-05639, Consolider-Ingenio QOIT projects,
and a ‘Juan de la Cierva’ grant, and from the Generalitat de Catalunya.

Appendix A. Basics of SDP

SDP [15] is a subfield of convex optimization concerned with the following optimization
problem, known as the primal problem

maximize tr(G Z),

subject to trFi Z = ci , i = 1, . . ., p,

Z � 0. (A.1)

The problem variable is the n × n matrix Z and the problem parameters are the n × n matrices
G, Fi and the scalars ci . A matrix Z is said to be primal feasible if it satisfies the conditions
expressed in (A.1).

For each primal problem there is an associated dual problem, which is a minimization
problem of the form

minimize, cT x,

subject to F(x)=

p∑
i=1

xi Fi − G � 0, (A.2)

where the variable is the vector x with p components xi . The dual problem is also a SDP, i.e. it
can be put in the same form as (A.1). A vector x is said to be dual feasible when F(x)> 0.

The key property of the dual program is that it yields bounds on the optimal value of
the primal program. To see this, take a dual feasible point x and a primal feasible point Z .
Then cT x − tr(G Z)=

∑p
i=1 tr(Z Fi)xi − tr(G Z)= tr(Z F(x))> 0. This proves that the optimal

primal value p∗ and the optimal dual value d∗ satisfy d∗ 6 p∗. In fact, it usually happens that
d∗

= p∗. A sufficient condition for this to hold is that there exists a strict feasible point of the
primal problem [15], that is, that there exists a matrix Z � 0 that is primal feasible. Such a
situation appears in the SDP problem (17), as for any matrix 0 satisfying the corresponding
linear constraints, we can always take λ small enough so that 0− λ11 � 0.
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There exist many available numerical packages to solve SDPs, for instance for Matlab, the
toolboxes SeDuMi [47] and YALMIP [48]. Such algorithms usually solve both the primal and
the dual at the same time and thus yield bounds on the accuracy of the obtained solution.

Appendix B. Certificates have bounded entries

Proposition 21. Let 0n be a certificate of order n for a behavior P. Then, |0n
st |6 1, for all

sequences S, T . That is, the set of all certificates of order n for P is bounded.

Proof. Because 0n
� 0, it just suffices to prove that all diagonal elements are smaller or equal

than 1. Consider thus any 2 × 2 submatrix of 0n:(
0n

ss 0n
st

0n
ts 0n

tt

)
. (B.1)

This submatrix must be positive semidefinite or, equivalently, its coefficients have to satisfy
0n

ss, 0
n
tt > 0 and 0n

ss ·0n
tt > 0

n
st ·0

n
ts . Now, take T = Ea S. From the operator relation S†T =

T †S = T †T , it follows that 0n
st = 0n

ts = 0n
tt . This, together with the positivity conditions, implies

that

0n
tt 6 0

n
ss, for T = Ea S, ∀|S|6 n, a ∈ Ã. (B.2)

In particular,

0n
aa 6 0

n
11 = 1, for all a. (B.3)

And, obviously, the same relations hold replacing as by bs. By induction, it is straightforward
that 0n

ss 6 1,∀S, and, therefore, |0n
st |6 1,∀S, T . ut

Appendix C. Rank loop conditions for intermediate certificates

We state here some results about rank loop conditions similar to the ones introduced in
section 4.2 and which hold for ‘intermediate certificates’ such as those that we used in
section 5.2 to maximize the violation of Bell inequalities.

Let us first define more precisely the certificates that we are considering here. Given a
pair of measurements X, Y , denote by Sn+XY the set of sequences Sn ∪ {S ∈ Sn+1 : S = Ea Eb S′,

a ∈ X̃ , b ∈ Ỹ }, i.e. Sn+XY is the set that contains all sequences of length n together with all
the sequences of length n + 1 that are of the form Ea Eb S′ for some a ∈ X̃ , b ∈ Ỹ . It is thus
intermediate between the set of sequences of length n and n + 1, as Sn ⊆ Sn+XY ⊆ Sn+1. Given
a vector n of positive integers nxy, define Sn+AB as the union of all sets Snxy+XY . By abuse of
notation, when n is an integer we interpret it as the vector (n, n, . . . , n). With the notation that
we have just defined, we have for instance that S1+AB = {11, Ea, Eb, Ea Eb : a, b ∈ Ã, B̃}, which
is one of the set of sequences that we used in the numerical applications presented in section 5.2.

Given an arbitrary certificate 0 associated to a set of operators S and a vector n of positive
integers such that Sn+XY ⊆ S, denote by 0n+XY the submatrix of 0 corresponding to the set of
sequences Sn+XY . Define similarly 0n+AB . If there exists a vector N such that

rank(0Nxy+XY )= rank(0N+AB), (C.1)

for all X, Y , then we will say that the certificate 0 has a rank loop. (Note that this definition is
weaker than the one given in section 4.2.)
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Theorem 15. A behavior P has a quantum representation of finite dimension d if and only if P
admits, for some N, a certificate 0 with a rank loop, and rank(0N+AB)6 d.

Corollary 16. Let P be a behavior corresponding to a bipartite system where Alice’s (Bob’s)
measurements have dA (dB) possible outcomes and such that each of the probabilities satisfies
P(a, b) > 0, for all a ∈ A, b ∈ B. Let 0 be a certificate compatible with this behavior
associated to the set of operators S, with S1+AB ⊆ S. Then, rank(0)= dAdB implies that
P has a quantum representation of dimension dAdB .

The proofs of theorem 15 and corollary 16 follow along the same lines as the proofs of
theorem 10 and corollary 11.

Appendix D. Certificates and non-negativity of probabilities

Let S1+AB = {11, Ea, Eb, Ea Eb : a, b ∈ Ã, B̃} be the set of all sequences of length less than 1,
together with all product operators consisting of one operator of Alice and one of Bob. The
proposition here below states that the existence of a certificate 0 corresponding to a set of
operators that contains S1+AB as a subset, thus in particular the existence of a certificate of
order n with n > 2, implies that the elements P(a, b) of the behavior associated to 0 are proper
probabilities, i.e. they are non-negative numbers.

Before showing this, however, let us remind some notation introduced in section 2.2. We
defined a behavior as a set of joint probabilities P = {P(a, b) : a ∈ A, b ∈ B} and implicitly
assumed that they satisfy the no-signaling constraints P(a)=

∑
b∈Y P(a, b) and P(b)=∑

a∈X P(a, b). To remove the redundancy associated with these constraints, we introduced
the reduced outcome sets Ã and B̃ so that P can be alternatively represented as P =

{P(a), P(b), P(a, b) : a ∈ Ã, b ∈ B̃}. Having reminded this definition, it is now easy to see
that the sets of operators S1+AB = {11, Ea, Eb, Ea Eb : a, b ∈ Ã, B̃} and SAB = {Ea Eb : a ∈ A,
b ∈ B} are linearly equivalent.

Proposition 17. Consider a measurement scenario (A, B,X ,Y), and let P = {P(a, b) : a ∈

A, b ∈ B} be a set of real numbers. If there exists a certificate 0 for P corresponding to a set S
such that S1+AB ⊆ S, then the numbers P(a, b) represent proper probabilities, i.e., P(a, b)> 0,
for all a and b.

Proof. Let P admit a certificate as in proposition 17. Then, according to lemma 7, P also
admits a certificate associated to the set S1+AB , and thus also a certificate 0′ associated to the
set SAB = {Ea Eb : a ∈ A, b ∈ B}. Since 0′

� 0, its diagonal elements 0′

ab,ab = P(a, b)must be
non-negative. �

Appendix E. Proof of lemma 13

Proof. Suppose that there exists a pair of values (z, t), with |t |< 1, such that

Mz,t =

(
P Q

QT R

)
� 0, (E.1)

with P =

(
1 z
z 1

)
, Q =

(
x1 x2

x3 x4

)
, R =

(
1 t
t 1

)
. Because |t |< 1 implies R � 0, lemma 12 in

section 5 states that the positivity of Mz,t is equivalent to the condition D ≡ P − QT Q−1 Q � 0.
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Now, D is a 2 × 2 matrix with non diagonal free entries and so its positive semidefiniteness is
equivalent to demanding that D11, D22 > 0. Therefore, we can get rid of the variable z. Taking
into account that t2

− 1< 0, we have that both conditions are equivalent to

α1 6 y 6 α2, β1 6 y 6 β2, (E.2)

for α1,2 = x1x2 ∓
√

x2
1 x2

2 − x2
2 − x2

1 + 1 and β1,2 = x3x4 ∓

√
x2

3 x2
4 − x2

3 − x2
4 + 1.

It can be verified that |α1,2|, |β1,2|6 1. A solution max(α1, β1)6 t 6min(α2, β2) can be
found if and only if

α1 6 β2, β1 6 α2, (E.3)

and the requirement that |t |< 1 translates into max(α1, β1),min(α2, β2) are not both equal
to ±1.

Now, it can be proved that condition (E.3) holds for any matrix Mz,t for which there exists
a pair of values z, t that makes it positive semidefinite. To see this, notice that, for Mz,t to
be positive semidefinite it is necessary that |t |6 1. So, if such a couple of values exist, for
any ε > 0 the matrix 1

√
1+ε
(Mz,t + ε11) 1

√
1+ε

is of the form (38) and there exists a pair of values
(z′

= z′/(1 + ε), t ′
= t/(1 + ε)), with |t ′

|< 1 that make it positive semidefinite. Therefore, the
vector (xi/(1 + ε) has to satisfy (E.3). Because this holds for any ε > 0, by continuity, also the
vector (xi) will satisfy (E.3).

Next we will prove that any vector satisfying (E.3) corresponds to a matrix of the type
M for which there exists a couple of values (z, t) that make it positive semidefinite. Suppose,
thus, that (E.3) holds. Two situations can arise: either max(α1, β1)= min(α2, β2)= ±1 or not.
In the second case, we know that we can find a pair of values (z, t) such that Mz,t � 0, whereas
in the first case it can be shown that x1 = x2 = x; x3 = x4 = x ′. But a positive semidefinite M
matrix for this case is given by the formula M = D · (M∗ + diag( 1

x2 − 1, ( 1
x ′ )

2
− 1, 0, 0)) · D,

where D = diag(x, x ′, 1, 1) and M∗
� 0 is a 4 × 4 matrix whose entries are all ones. Therefore,

condition (E.3) is necessary and sufficient to guarantee the existence of a pair of values (z, t)
such that Mz,t � 0. Making the change of variables xi → sin(φi) in (E.3) leaves us with (36). �
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