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Abstract

Entanglement is the main quantum property that makes quantm infor-
mation protocols more powerful than any classical counteapt. Moreover,
understanding entanglement allows a better comprehensiar physical phe-
nomena in the elds of condensed matter, statistical physs&; and quantum
optics among others.

The open questions on entanglement range from fundamental practical
issues. How to characterize the entanglement of quantum $s? What
Is entanglement useful for? What is the relation between emiglement and
other physical phenomena? These are some open questions nedaced with
nowadays.

This thesis contains several original results in this eld. Some of the
addressed questions rely on the mathematical descriptiori entanglement
while others on its description in some physical systems. Mospeci cally,

() it will be shown a relation between two quanti ers of entaaglement,
the generalized robustnesand the geometric measure of entanglement

(i) the entanglement of superpositions will be generalideto the multi-
partite case and to several entanglement quanti ers;

(iii) a recently proposed Bell inequality for continuous-gariable (CV) sys-
tems will be used to extend, for the CV scenario, the Peres' mjecture that
bound entangled states admit a description in terms of hiddevariables.

(iv) a proposal to probe the geometry of the set of separabléates will
be made. This approach is able to nd singularities in the bater of this set,
and those are re ected in the entanglement properties of cdansed matter,
atomic, and photonic systems. An experiment involving entggled photons
coming from parametric down conversion will be described ttustrate the
theoretical results;

(v) the decay of entanglement of generalize -particle GHZ states inter-
acting with independent reservoirs will be investigated. &ling laws for the
decay of entanglement and for its nite-time extinction (sulden death) are
derived for di erent types of reservoirs. The latter is foun to increase with
the number of particles. However, entanglement becomes drarily small,
and therefore useless as a resource, much before it compyetisappears,
around a time which is inversely proportional to the number particles.
The decay of multi-particle GHZ states will be shown to genate bound
entangled states;



(vi) and nally, the entanglement properties of particles h a non-interacting
Fermi gas are studied. Since there is no interaction amongdlparticles, this
entanglement comes solely from the statistical propertiesf the particles. It
will be shown how the way we detect the particles changes thentanglement
properties. Additionally a realistic proposal to convert dentical particle en-
tanglement of fermions in a quantum well into useful photoi entanglement
will be given.
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Chapter 1

Introduction

Quantum Mechanics was born as a framework to describe phyaigphe-
nomena at the atomic level. Amazingly successful, this theowas rapidly
applied to a lot of scenarios such as atomic emission, paléiscattering, and
radiation-matter interaction [ER85, FLS65].

The rst strong criticism to quantum theory came with the Einstein,
Podolsky and Rosen's (EPR) paper \Can quantum-mechanicalegcription
of the physical reality be considered complete?" [EPR35].hHEse authors rec-
ognized that, although quantum theory could catch many physal e ects,
it allowed weird predictions such as instantaneous actiorest distance. In
the essence of the EPR argument was the use of what is nowadagdled
an entangled state. Motivated by EPR, Schedinger was the one who rst
discussed the fact that some composite quantum systems caa tbetter un-
derstood if we look at them as a whole, instead of addressingetir parts
separately [Sch35].

Many years passed until J. Bell put all this discussion in mer solid
grounds. Accepting the notion of local realism adopted by BR, Bell devel-
oped his famous inequality involving statistics of measum@ents on composite
quantum systems [Bel87]. From that point on, the local readim debate could
go to the labs. Some time later the rst experimental tests oBell inequalities
started to appear [FC72, FT76, AGG81, ADG82] and con rm the on-local
aspect of quantum mechanics. As unentangled states (alsdled separable
states) can never violate a Bell inequality, the experimeat violation of Bell
inequalities can be seen as the rst observation of entanghent [Ter00].

Up to the 90's the debate on separability was played mostly ia funda-
mental level, relying in the grounds of Quantum Mechanics.t vas only with
the appearance of the rst tasks on Quantum Communication ashQuantum
Computation that the term \entanglement" got the status of \the resource"
capable of providing us advantageous methods over classiodormation pro-

11



12 INTRODUCTION

cessing [NC00, BEZ0Q]. In 1991, it was described a Cryptoghac protocol
entirely based on entanglement [Eke91]. However, at thatrtie, the commu-
nity already knew that without entanglement the same goal add be reached
[BB84, BBD92]. Perhaps the turning point on the theory of erdanglement
was the discovery of Quantum Teleportation [BBC+93] . At tha moment it

became completely clear the role of entanglement in pracictasks.

From that point on entanglement theory took its own road, beig rec-
ognized as a discipline itself inside Quantum InformationAmong the main
goals of entanglement theory are the development of a mathatictal frame-
work able to describe this issue, the search for applicatisrof entanglement,
the study of the role it plays in natural physical phenomenaand, coming
back to fundamental problems, its importance in the foundabns of Quan-
tum Mechanics. Nowadays the literature on entanglement isn@azingly big.
The purpose of this thesis is not to give the reader a survey dhis topic,
but, instead, to contribute to the knowledge of this eld. Mae appropri-
ate reviews on entanglement are found in Refs. [HHHHO7, AFQ@V, PVO05,
Bru02, Ter02, PV98, Ver02, Eis01, EPO3].

1.1 Motivation

As commented before the open questions in this eld range frothe
mathematical description to practical applications. Amog all these facets
of entanglement | will try to give here a small avor of those wkich motivated
me more during my PhD.

Although the mathematical de nition of entanglement is rehtively sim-
ple, the task of deciding if a general state is entangled isaredibly di cult
[Ter02, HHHHO7F. Developing techniques to attack this problem is one of
the major goals of entanglement theory. A step further of \jst" knowing
whether a state is entangled is to know how much entangled &.i Following
this vein, entanglement quanti ers are a set of rules one apps to a quan-
tum state in order to estimate its amount of entanglement [P¥98]. Behind
the initial attempts to quantify entanglement was the idea & quantifying
how useful a quantum state is to perform some task [BBP+96, BEW96].
This is a very promising way of de ning entanglement quantiers, but it
certainly depends on the task one is dealing with. A more aximatic road
is just to de ne a set of properties an entanglement quanti e must satisfy,
without wondering whether the quanti er itself carries a plysical meaning
[Vid0O, VPRK97]. Finally, another approach frequently fdlowed is to quan-

LIn technical terms it is said that the problem of determining if a general state is
entangled is NP-hard [Gur03].
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tify entanglement using geometric ideas. We can organize aptum states
in mathematical sets, and de ne distances on these sets. Tlenount of
entanglement of a given state can be quanti ed, in this way,\bthe distance
between this state and the set of unentangled states [VPRKOYP98]. The
number of proposed entanglement quanti ers is huge, and uatstanding the
properties of each quanti er and the information they bringis an important
branch of entanglement theory. In this sense, getting relamns among the
existing quanti ers could help us to get a better understanishg on how to
order quantum states in terms of their entanglement content

With the development of entanglement theory it started to bepossible
to connect this issue to other elds of physics. For instancethe study of
entanglement in realistic models has allowed us to get a degunderstanding
of several phenomena in condensed matter, atomic and phoiorsystems
[RMHO1, LBMWO03, KWN+07, AFOV07]. Practical questions con@rn which
kinds of interactions allow the production of entanglementhow it behaves
under specic unitary evolution and how is entanglement a eted by the
presence of noisy environments.

Following the last point, it is essential to understand how m|tanglement
behaves in realistic situations where unavoidable errora the preparation
of states and unwanted interactions during the post-procemg are present.
Many studies linking entanglement and decoherence have aaped so far
[Dio03, DHO04, YEO4, YEO6, YEO7, SMDZ07, Ter07, AJO7], but soe funda-
mental questions are still to be answered. One of them connsrthe behavior
of multiparticle entanglement under decoherence processgSK02, CMB04,
DB04, HDBO5]. From a theoretical point of view, understandig this prob-
lem would give us a better understanding on the appearance dassicality
when increasing the system's size. From a practical point wiew, this issue is
crucial since the speed-up gained when using quantum-mealeal systems,
instead of classical ones, for information processing isesmlly relevant in
the limit of large systems.

Finally, most of the theory of entanglement was constructeth the sce-
nario of distinguishable particles. In this case one idensis (labels) the
subsystems and then de nes what is a local, or individual, @pation. When
dealing with identical particles the idea of entanglement é&comes much sub-
tler: in an identical particle scenario labeling the subsyems makes no sense
anymore and then talking about local operations is misleadlj. Another
problem concerning identical particles is that entanglenm¢ \comes for free"
in this case. Two fermions in the same location get spin entgled (in a
singlet state) just because they obey the fermionic statiss. It is then not
clear, and actually controversial, how to describe this koh of quantum cor-
relations, if they are useful for quantum information procssing, or even if
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we should call them \entanglement" [ESBL04, GMO04] .

1.2 Contributions

Let me briey comment on some of the ideas that I, together wit col-
laborators, developed to get a better understanding of ermglement.

Geometric Measure vs. the Robustness of Entanglement.

As already commented, many are the entanglement quanti ensroposed
up to now. Finding relations between them can help us to clagsthem, and
get a better understanding on the information they give us. have found a
relation between two standard quanti ers, the Geometric Masure Egue )
and the Generalized Robustness of EntanglemerR§). While the rst has a
clear geometrical meaning as a distance between an entauigbtates and the
set of separable states, the latter was proposed as a measoféiow much
noise a state can tolerate before it looses its entanglement

It follows from their de nition that Ry is always larger than or equal to
Ecme . | will show a better lower bound toRy based only on the purity of
the quantum state and its maximal overlap to a separable stat As we will
see it is possible to express this lower bound in terms BEye . | will nally
identify cases where this bound is tight.

Multipartite entanglement of superpositions.

Given two pure states] i andj i, how is the entanglement of the super-
position stateaj i+ bj i related to the entanglement of the constituent$ i
andj i? This question was rst addressed by Linden, Popescu and Shmo
who gave upper bounds to the entanglement of the superposédts in terms
of the entanglement of the former states [LPS06].

M. Terra Cunha, A. Acn and | have considered a possible geralization
of the Linden, Popescu and Smolin's result to the multiparte scenario: an
upper bound to the multipartite entanglement of a superpotibn was given
in terms of the entanglement of the superposed states and teaperposition
coe cients. We have proven that this bound is tight for a clas of states
composed by an arbitrary number of qubits. Our results alsoxeend the en-
tanglement of superpositions to a large family of quanti e which includes
the negativity, the robustness of entanglement, and the beseparable ap-
proximation measure.
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Bound entanglement and Bell violation in a continuous-vari able
scenario.

Guided by the similarities between the processes of entaagient distilla-
tion [BDSW96] and revealing hidden non-locality [Pop95, #86a], A. Peres
conjectured that all undistillable stateg satisfy Bell inequalities. This con-
jecture has been con rmed only in the scenario wherd individuals apply
just two measurement settings of binary outcomes.

Recently a new Bell inequality has appeared which can be apgal to un-
bounded operators, i.e. it works in a continuous-variablecgnario [CFRDO7].
Using this new Bell inequality we will see that it is possibléo extend Peres
conjecture to the CV scenario, and prove that all states harng a positive
partial transposition satisfy this inequality>. These results were found in
collaboration with A. Salles and A. Acn.

Shining light on the geometry of entanglement.

The set of quantum states is convex and closed: convex conddions of
quantum states are also quantum states. The set of separaldates forms
a subset, which is again convex and closed. Apart from thessafures that
follow directly from the de nition of quantum and separablestates [BZ06],
subtler questions arise when considering these states. Htwcharacterize
the shape or the volume of these sets and to determine whethbey have
any in uence on directly measurable quantities are some ofiése queries.

In collaboration with M. Terra Cunha, M. F. Santos, F. Brandao, P. Lima,
O. Cosme, S. Padua, and C. Monken | proposed a method to invegate the
shape of the set of separable states through an entanglemego&nti er called
random robustness of entanglementhis quanti er serves as a \microscope"
to probe the boundary of the set of separable states. Moreovihis inves-
tigation can be done experimentally, what allows to get infonation on the
shape of the set of di erent entangled states in real experents. We imple-
mented this method in a photonic experiment and found singatities in the
shape of the separable states in the two-qubit case. As a cegsence, sin-
gularities appear in the quantum correlations a system prests. | will also
show that this phenomenon appears naturally in physical poesses like the
entanglement transfer problem, spin systems under varyingagnetic elds,
and decoherence processes.

2The concept of entanglement distillation will be discussedater.
3All states having positive partial transposition are undistillable [HHH98], while the
opposite is not known.
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Mutipartite Entanglement vs. Decoherence.

In the real world we never have a pure quantum state. Due to umaidable
errors in the preparation of states or noise in their postpiessing we always
deal with mixed states. Entanglement is very fragile to thesnoisy processes
and this is certainly the main obstacle to real applicationson Quantum
Communication and Computation. On the other hand, the phenmenon
of coherence loss, or decoherence, is in the core of the quamtlassical
transition [Zur03]. So, understanding how quantum systembBehave under
the presence of noise is a fascinating challenge both from @agtical and a
fundamental perspective.

With L. Aolita, R. Chaves, L. Davidovich, and A. Acn, | have addressed
this point and investigated the decay of entanglement of a peesentative
family of states, namely unbalanced GHZ states consisting an arbitrary
number of particles. Dierent types of reservoirs interadhg independently
with each subsystem were considered and scaling laws for tthecay of en-
tanglement and for its nite-time extinction were found. The latter increases
with the number of particles. However, entanglement becommearbitrarily
small, and therefore useless as a resource, much before inptetely dis-
appears, around a time which is inversely proportional to # number of
particles. It was also shown that the decay of multi-partid@ GHZ states can
generate bound entangled states.

Is identical-particle entanglement useful?

Suppose a gas of non-interacting fermions at zero temperegu If we
pick up two fermions from this gas, are them spin-entangled’have studied
this question together with M. F. Santos, M. Terra Cunha, C. lunkes, and
V. Vedral, and showed that its answer depends not only on theislance
between the particles but also on the way (the detector) we gk them. We
rst considered an ideal measurement apparatus and de nedperators that
detect the symmetry of the spatial and spin part of the dengjt matrix as
a function of particle distance. Then, moving to realistic dvices that can
only detect the position of the particle to within a certain gread, it was
surprisingly found that the entanglement between particke increases with
the broadening of detection.

In this context we also considered the problem of using thigléntical
particle entanglement. For this aim, L. Malard and F. Matingga joined us
to report on a scheme to extract entanglement from semiconchor quan-
tum wells. Two independent photons excite non-interactinglectrons in the
semiconductor. As the electrons relax to the bottom of the oaluction band,
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the Pauli exclusion principle forces the appearance of quam correlations
between them. | will show that, after the electron-hole recuabination, this
correlation is transferred to the emitted photons as entagment in polariza-
tion, which can be further used for quantum information task. We can then
conclude that identical particle entanglement is indeed useful for quamh
information processing!

1.3 Overview

| will start this thesis by reviewing the existing ideas neeeld to the deriva-
tion of the thesis' results. They consist on basic concepts1@ntanglement
theory and are given here for the sake of completeness. In thEmaining
chapters | will expose some of the original results | develeg during my
PhD.

The next three chapters are more related to the mathematicébrmalism
of entanglement theory: chapter 2 shows a connection betwesvo entangle-
ment quanti ers, chapter 3 discusses the problem of the emglement of su-
perpositions, and chapter 4 focuses on the relation betweentanglement and
violation of Bell inequalities. Chapter 5 deals with a mathmatical problem
as well, the geometry of entanglement, but also aims at ndijconsequences
of it in physical phenomena. A photonic experiment was impheented to
illustrate our achievements on this subject.

The following chapters are related to the characterizationf entanglement
in speci ¢ physical processes. Chapter 6 describes how th@amglement of
an important family of multiparticle system changes in the pesence of noise.
Chapter 7 discusses the entanglement properties of degeaterFermi gases
and how the way we observe this system in uences the entangient we de-
tect. Moreover | consider an exemplary system, a semicondoic quantum
well, to show that the Pauli principle can be used to create e$ul entangle-
ment. Finally I will draw some conclusions in the last chapteand point out
future directions that could be followed towards a better uderstanding of
entanglement.






Chapter 2

Background

In this chapter | will brie y review the concepts used in the agvelopment
of the ideas presented in the next chapters. The goal is not tpve a broad
overview on each of the addressed topic. Thus, many importaresults on
entanglement will be skipped here. The purpose of this chagtis to provide
the reader a self-contained text and also of nding some usefreferences.
Those who are already familiar with entanglement theory caskip this part
of the thesis. More complete reviews on entanglement can meihd in Refs.
[HHHHO7, AFOVO07, PVO05, Bru02, Ter02, PV98, Ver02, EisO1, EB3].

2.1 What is entanglement?

Quantum states are described by semi-de nite positive opators of unity
trace acting on a Hilbert spaceH known as the state space. Thus, an oper-
ator 2 B(H) (the Hilbert space of operators acting orH) representing a
quantum states satis es:

1. 0;
2. Tr( )=1:

Such operators are called density matrices or density opéves. Any density
operator can be written (non-uniquely) through convex comhations of one-
dimensional projectors, that is,
X
= pjith i (2.1)
i
such that X
pp=1and p O (2.2)

19
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A special case of representation (2.1) is whgn = 1 for somei, so we can
describe a quantum state by a unidimensional projector.e.:

= ith (2.3)

In this case, is called a pure state. Pure states are the extreme points of
the set of quantum states and then represent those systemsrr which we
have the most complete information.

System composed by many parté; B;::;; and N are also represented by
density operators, but now acting on a vectorial spackl with a tensorial
structure:

H=Hs Hpg @ H n; (2.4)

whereH 5 ; Hg;..., and Hy are the state spaces for each part.

The notion of entanglement appears in these composite spacd.et me
rst present the de nition of entanglement and separabilily for bipartite sys-
tems, and then move on to the idea of multipartite entanglenre.

De nition 1 - Bipartite separability: Bipartite separable states are those
which can be written as a convex combination of tensor prodsiof density
matrices, i.e.. 2 B(Ha H ) is separable if
X
= pt 5 (2.5)
i
wherefp;g is a probability distribution. Alternatively, states thatcannot be
written in this form are called entangled.

An example of an entangled state i i = (jO0 + j11i) P 2.

In the case of bipartite systems we need just to make a distithan between
separable and entangled states. When multiple parts are iolved it may
happen that a state contains entanglement among some parthieh, at the
same time, are separated from others. An example is the state

(joOo + j11i)  (jOG + j11i)

d é ™ é '

which contains entanglement between the rst two and betweethe last two
subsystems, but not between these two subgroups. In this ¢ert, di erent

ways of entangling multiple parts emerge. We are then led td¢ notion of
k-separability [DCT99, DC00, ABLSO01]:

(2.6)

De nition 2 - k-separability: A quantum state is calledk-separable if it
can be written as a convex combination of states which are gwot of k tensor
factors (as a generalization of(2.5)).
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The state (E.6) is just an example of a 2-separable (or bisejadle) states.
A more detailed description of multipartite entanglement$ presented in Ap-
pendix A.

2.2 How to detect entanglement?

Given a general quantum state , how to determine if it is entangled?
In principle one could think of checking whether can be written as (2.5).
However, as can be represented in in nitely many convex combinations,
the task of nding if one of these forms reads like (2.5) is amaangly di cult
[Gur03, Ter02, HHHHO7]. We must then nd other methods to chek sep-
arability. Following this reasoning severalentanglement criteria have been
developed in the last years [Ter02], but up to now there is noeditive test
for separability and it is unlikely to exist in general. In what follow | will
present some criteria that will be used along the text.

Bell Inequalitites

Suppose an experimental scenario where two physicists, aby called
Alice and Bob, in two space separated locations are given arpele each
produced by a common source. Alice and Bob choose some measiant
settings to perform on their particles. For instance, Alicechooses to per-
form measurements using two di erent devices (settingsy\; and A,, each
one delivering a possible set of outcomes labeled &y and a, respectively.
Equivalently Bob choosed3; and B,, with possible outcomedy and b,. The
basic objects Alice and Bob might compute are their joint prioabilities ob-
tained from the experiments. For example,

P(@a2=1;lm= 1jAz;By) (2.7)

is the probability of Alice getting outcome 1 when measuringer system with
apparatus A, and Bob getting 1 when measuringB,.

The main problem concerning non-locality consists in askinwhether the
measured joint probabilities are compatible with local-ralistic theories. In
other words, whether the measurement data can be explainedder the as-
sumption that Alice's outcomes is completely independentfdob's setup
(locality) and that the measured properties have preexisig values, inde-
pendent of their observation (realism) [WWO01b, Gis07].

Bell has shown that some quantum states do not admit such ldegealistic
interpretation (also called alocal-hidden-variable (LHV) mode) [Bel87]. This
was done through the derivation of inequalities (Bell inealities) involving



22 BACKGROUND

the measured probabilities, which turn out to be satis ed byjoint proba-
bilities admitting an LHV model. As the statistics obtained by measuring
separable states always admit an LHV model, the violation @ell inequali-
ties also indicates entanglement [Ter00, WWO01b].

The rst conclusive experimental demonstrations of Bell \alations started
to appear in the 80's [AGG81, ADG82], much before entanglemiewas rec-
ognized as an important resourée Nowadays, Bell type experiments have
become a routine, and are performed sometimes just as an evipental cal-
ibration. It must be stressed that some entangled states daohviolate Bell
inequalities [Wer89, TA06, APB+07].

Schmidt decomposition.

Any bipartite pure statej i2H 5 H g can be written as

X
ji= il jiig s (2.8)
|
wherem = min[dim( Ha);dim(Hg)], fjii o0 (fj iizg) is an orthonormal basis
for Hya (Hg), and ; > 0 [Sch07, EK95, NCO00]. The decomposition (2.8)
is called the Schmidt decompositionand the coe cients ; are called the
Schmidt coe cients of j i.
If j i has only one non zero Schmidt coe cient, it is clearly sepafde,
and if it has more than one Schmidt coe cient it is entangled. In this way

the Schmidt decomposition completely characterizes sejpaility for bipartite
pure states.

Peres-Horodecki criterion.

Although the Schmidt decomposition is a very powerful and esul en-
tanglement criterion, it can be applied only to pure statesThe rst entan-
glement criterion for mixed states was proposed by A. Peresd uses the
notion of partial transposition [Per96b].

Writing a bipartite state g in a product basisfj ij ig, i.e.:

X
AB = ijzkl Jlj |hk|], (29)
ikl

LAll the experimental violations of Bell inequalities up to now su ered from some
loop-hole problem [GisO7]. Hence, although all of them indiate the non-local nature of
guantum mechanics no de nitive proof has appeared so far.
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where j are the matrix elements of g in this basis, the partial traspo-
sition of Ag Is de ned as:
Ap = ik JiLTHK]j (2.10)
ikl

It is possible to see that if Ag IS separable ,TfB is a positive operator. We
can then state: If XBB has a negative eigenvalue g is entangled (Peres
criterion).

Although Peres conjectured that his criterion was able to dect any bi-
partite entangled state this was proven to be the case onlyrfsystems of di-
mensions smaller than 6. For higher dimensions there exigttangled states

with positive partial transposition [Hor97, HHH96, HHH98]

Entanglement Witnesses.

It follows directly from de nition 2 that k-separable states form a convex
set, Sx: convex combinations ok-separable states are alsk-separable. The
task of determining if a quantum state is k-separable can be reinterpreted
as determining if is inside the convex setS. It follows from the Hanh-
Banach theorem that any point outside a convex set, can be septed from
this set by a hyperplane (see g. 4.14) [BV04]. This geometal fact can
be used in the separability problem by stating thafor any entangled state
there exists some Hermitian operatow* such that

(i) T(WX )< 0;

and
(ii)Tr(Wk) 08 2 Sy

[HHH96]. We callWX a k-entanglement witnesgor the state .

Entanglement witnesses are the theoretical solution forgarability. How-
ever, given a general state it is not easy to nd a witness deaténg it. Numer-
ical methods to nd witnesses have been proposed [BV04a, Bif) DPS04],
but they are usually ine cient for high dimensional systems

Entanglement witnesses were also shown to be able to quaytjBra05]
or at least to estimate the amount of entanglement a state haee next
Section) [CT06, EBAO7, GRWO07]. Finally, aswX is a Hermitian operator it
can, in principle, be measured, and then entanglement can beperimentally
veri ed (seee.g: Refs. [BEK+04, BMN+03, AJK+05, HHR+05, KST+07]).
Moreover, Bell inequalities can be seen as examples of emfi@ment withnesses
[Ter02, HGBLO5].
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Figure 2.1: Geometric representation of  k-entanglement witnesses.

2.3 How to quantify entanglement?

With the advent of Quantum Information Theory entanglementstarted
to be seen as a resource. Then it became fundamental to knowvhimuch of
this resource is available iB each state. Let me start with aexample. The
statej i =(jO0 + jlli)= 2 can be used to perform perfect teleportation
of a one-qubit state [BBC+93]. As a convention we can say that . i has 1
ebit of entanglement, and de ne it as the basic unity of this resage. What
happens if we use another quantum state for teleportation?

Several measures of entanglement have been proposed soFf&0p]. Dif-
ferent approaches to get entanglement quanti ers were caddsred, most of
them based on the following ideas:

1. Convertibility of states: The state ) i is said to be more entangled
than j i if we can transformj i into j i deterministically using just
local operations and classical communication (LOCC). Thigay of or-
dering states comes naturally from the fact that entanglenmt¢ cannot
be created by LOCC, since it is a purely non-local resource. n® of
the problems with this approach is that very little is known dout
conversion of mixed states [Jan02, LMDO08]. Furthermore, em in the
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pure-state case, some states are not convertible [JP99].

2. Usefulness: A state j i is more entangled thanj i if it supersedes
j 1 in realizing some task. As one can see, this way of quantifgin
entanglement is highly dependent on the considered task. k= given
two states the rst can be better than the second for some taskut
worse for others.

3. Geometric approach:The amount of entanglement of a quantum state
is given by the distance between this state and the set of sephle
states. Again, this approach does not depend only on the s&st them-
selves, but also on the chosen distance measure.

Examples of quanti ers following theses ideas can be found iRefs.
[PVO5, HHHHO7]. In what follows | am going to present the quaners
| will use along this thesis.

Distillable entanglement

Keeping in mind that j .i is in general the optimal state to perform
gquantum information tasks, one can think on the following psblem. Suppose
two separated observers, Alice and Bob, would like to perforone of these
tasks but do not sharegj . i states. Instead, they are supplied with as many
mixed states ag as they wanf. Can they use their states g to establish
j i states between them by LOCC? What is the cost of this transfaration?

The distillable entanglementanswers these questions and determines how
many|j *i pairs can be extracted (or distilled) out ofn pairs of the state g
using LOCC, in the limitof n!'1 . In mathematical words the distillable
entanglement of g is given by

Eo( ss)= Sup lim (2.11)

LOCC n

wherem is the number ofj *i pairs that can be extracted by applying LOCC
strategies occ ON ,g -

The main diculty of the distillable entanglement is the optimization
over all possible LOCC protocols it contains. This makes thiquanti er
extremely hard to compute in general.

Another curious feature of distillation is the fact that not every entangled
state is distillable [HHH98]. For some states there is no LOL protocol

2This scenario is the typical one in real tasks, where errorsyipically decrease the purity
of the state one deals with.
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able to get maximally entangled states out of them, even if nmy copies are
available’. These undistillable states are called bound entangled $s.

Negativity

In the previous section we saw that if a state g has a negative partial
transposition, it is entangled. Thenegativity (N ( ag )) makes use of this fact
and quanti es entanglement as the sum of the absolute value$ the negative

eigenvalues of ™ [LK0O, VWO02], i.e.:
X
N( ag)= Jils (2.12)

i<0

being ; the eigenvalues of ;& .

The main advantage ofN( ag) is that it is an operational quanti er
and can be easily calculated for any bipartite state. Howekeas already
commented, the Peres criterion is not able to detect all emtgled states.
Consequently the negativity of somentangledstates is null. It was interest-
ingly shown that those entangled states with null negativit are undistillable
[HHHO8].

Robustness of Entanglement

The robustness of entanglemerdf a k-partite state is a natural quanti-
er of how much noise admits before it become&-separable [HNO3, VT99].
Suppose we would like to have &-partite state but due to errors we end
up having the noisy state%, where is another quantum state ands is
a positive number. How much noise the state tolerates before getting
k-separable? Therelative robustness(R¥( jj )) aims at quantifying that,

and is mathematically de ned as
+
RY( ji )=min s suchthat = 1Tss is k-separable. (2.13)

It might happen that for some patrticular choices of , is neverk-separable.
In this thesis | will be more concerned with two related quarities. The rst

is called therandom robustness(RY) and represents the robustness of the
state with respect to the most mixed statel=D, wherel isthe D D
identity matrix, i.e.:

K/ s _ +sl=D .
Rg( ) =min s such that = T is k-separable. (2.14)

3In the special case of 2 qubits all states are distillable [HH97].
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Figure 2.2: Geometrical interpretation of RE - The straight line repre-

sents the convex combination%. RE( ) is given by the value ofs such

that this combination becomesk-separable.

As the statel=D is always interior to the set ofn-separable statesi(e.: the
fully separable states)[ZHSL98], the minimization in (24) is well de ned.

Another useful quantity is the generalized robustness of entanglement
(Rg( )) which is the minimization of the relative robustness ovemll pos-
sible states [Ste03],i.e.:

RS( ) =min R*( jj ): (2.15)

Apart from the direct operational meaning in terms of resigtince to noise,
the robustness of entanglement have other interesting feaes. First it can
quantify any kind of multipartite entanglement. Furthermore the robustness
also has a clear geometric interpretation. The state can be seen as a
convex combination of the state and the noisy state . The robustness
of entanglement gives the point where this convex combinati crosses the
border of the set ofk-separable states (see Fig. 2.3).

Geometric Measure of Entanglement

The geometric measure of entanglemer&&,,- ( ) quanti es entangle-
ment through the minimum angle between a statg i and a k-separable
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Figure 2.3: Geometrical interpretation of R'é - The straight line rep-
resents the convex combination->-. We see that for a given state and
a value of s this combination becomesk-separable. R‘g<( ) is de ned as the
minimum s, considering all possible states.

statej i [BLO1, WGO03],i.e.:
Edue ()=1 2 ) (2.16)

where
R ( )=mg>§jh i (2.17)

Thus E&,,c is also able to quantify multipartite entanglement.

For mixed states,E&,,z uses the so-called convex-roof construction:
X

Egwe ()= min — pEGue (1); (2.18)
’ 1 |

wherefp;;j iig are possible ensemble realizations of

Witnessed Entanglement

The witnessed entanglementEy, ( )) uses the notion ofk-entanglement
witnesses to quantify entanglement [Bra05]. We have seenath given a k-
entanglement witnesswk, Tr(W* ) < 0 is an indicator of entanglement in
the state . EY, uses the value of this trace as a quanti er:

Ey ()=maxf0; min Tr(W* )g; (2.19)
W k2Mm
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where M is a restricted set ofk-entanglement witnesses which guarantees
that the above minimization is well de ned.

Again this entanglement quanti er can deal with di erent kinds of mul-
tipartite entanglement since we can choose the s&d as being the set of
witnesses with respect tok-separable states. Moreover, as entanglement
witnesses are linked to experimental observables, in pripte, Ef, can be
experimentally determined, or at least estimated [CT06, ER07]. The main
problem in the de nition of E¥, is the minimization process it involves.

Finally, several entanglement quanti ers can be written ag2.19) by ad-
justing the set M [Bra05]. Among these quanti ers are the concurrence
[Wo098], the negativity [VWO02], the robustness of entanghent [VT99,
HNO3, Ste03], and the best separable approximation [LS9881]. For in-
stance, the generalized robustness of entanglement cop@sds to the choice
M = fwkjwk |gand for the random robustnesM = fWX | Tr(Wk) =
Dg.






Chapter 3

Connecting the Geometric
Measure and the Generalized
Robustness of Entanglement

The purpose of this chapter is to point out a connection betves two well
discussed entanglement quanti ers, the generalized roldonsss Rg) [Ste03]
and the geometric measure of entanglemengf,,c ) [BLO1, WGO03]. The
relation between these quanti ers is not straightforwardsince they rely on
distinct interpretations (see Chapter 1).

3.1 Relating Ry and Egue to entanglement
witnesses.

As we will see, the connection of these two quantiers will benade
through the fact that both can be related to the notion ofk-entanglement
witnesses. This relation is shown in what follows.

One can always construct &-entanglement witnesse®VX, for a pure state
j 1 with k-entanglement, of the type [WGO03]

wk= 2j ih j; (3.1)

2 R. Asthis operator must have a positive mean value for eveky¢separable
state, the relation

1 2 maxkh ] ik2 2 (3.2)

must hold. The optimal witness of the form (3.1) W, is the one for which

31



32 CONNECTING Ry AND Egye

= 2. Thus we can write
Wee= & j ihj: (3.3)

In a di erent fashion, we have seen that the robustness of eaiglement
of a state quanti es how robust the entanglement of is under the presence
of noise. As well as the geometric measuné‘é is intimately connected to the
notion of entanglement witnesses, and can be expressed ai&92 by choosing
M as the set ofk-entanglement witness satisfyingvk | [Bra05].

3.2 Ecgme as a lower bound for Rq

As the witness (3.3) satis es the conditionw | we can attest the
following: for pure statesj i,

RE( ) Eéwe () (3.4)

Some points concerning the inequality (3.4) must be streske First, it is
a relation valid for all kinds of multipartite entanglement Moreover this
relation is strict whenever the witness (3.3) is a solutionfahe minimization
problem in (2.19). Finally, one could argue that the relatia (3.4) may be, in
fact, a consequence of standard results from matrix analggielating di erent
distance measures between operators (as commented, b&h and E§e
are related to such distances). It must be clear thaRg( ) is not simply the
distance between and its closest state 2 S¢. One should keep in mind
that this function also depends on the reference state! (recall Figure 2.3).
This makes the closesk-separable state usually di erent forR§ and E&y -

In fact, it is possible to give a tighter relation betweerR¥ and E§ye . |
am going to need the following result for this aim:

Lemma 1 For every state ,

Tr( ?)
RX :
ol ) max s, Tr( ) (3-5)
Proof. Suppose &-entanglement witness of the fornwW = | . The fact
that Tr(W ) 08 2 S implies that
Tr[( 1 ) 1= ™ ) O (3.6)

It is now easy to see that maxs, Tr( ) is equal to the minimum value of
( min),0l.€.0  min = mMax 2Sy Tr( ).

1Besides that there is a minimization among all possible stats .
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Note that

<lI: (3.7)

min min

So we can writeRg( ) Tr(W?), from which follows the required result.

The lower bound onRg expressed by (3.5) can be easily interpreted: T#
measures the purity of , and Tr( ) is the Hilbert-Schmidt scalar product
between and . It is expected that the more mixed is, the lower the
value of Tr 2, and the state becomes less entangled. Similarly, the large
max »s, Tr( ), the closer to the setS, gets, and the system will show less
entanglement.

Note that in the special case of pure states the relations Trf) = 1 and
max ,s,) Tr( )= 2( ) hold and therefore we have the general relation

1

RE() — 1: (3.8)
()
We can nally arrive at the relation we were looking for:
Ek
R ——GME . 3.9
O (3.9)

It is interesting that two entanglement quanti ers with di erent geometric
interpretations are actually related. Moreover relation 8.5) allows an ana-
lytic lower bound to the generalized robustness for all stas whenever 2( )
can be analytically computed. This is the case, for examplef completely
symmetric states, Werner states, and isotropic states [WG) WEGMO04]. ?

3.3 Examples

For bipartite pure states all the quantities considered saaf can be ana-
lytically computed. In this case, the generalized robustiss is given by

k _ X N2 .
Rg( )—(_ )L (3.10)

beingf ;g the spectrum of Schmidt off i [Ste03]. In this context it can be
noted that  is given by the modulus of the highest Schmidt coe cient of

2We can furthermore see from (3.8) that log,(1+ R'é) 2log, «: The left-hand side of
this expression is the logarithmic robustness of entangleent (LR '5), another entanglement
quanti er with interesting features [Bra05]. Curiously, t his is exactly the same lower bound
expressed to the relative entropy of entanglement in Ref. [VEGMO4].
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Figure 3.1. Generalized Robustness of Entanglement (blgcand its lower
bound given in Eqg. (3.9) (grey) for the state (3.11).

J 1 [WGO03]. To visualize and compare these entanglement meassirl have
calculated the generalized robustness, and the lower bouexpressed in (3.9)
for the state

i i="pjooi+" T pjiii: (3.11)

The plots are available in gure 3.1.

As the presented relations betweeRg and E,,z are also valid for mul-
tipartite entanglement it is useful to illustrate the resuts in this context.
Consider for instance the completely symmetric states deed as:

r +
1S(n; k)i = ws P_qi?_pllgzk} ; (3.12)

where S is the total symmetrization operator. Wei and Goldbart showd
an analytical expression toEZ,,e (jS(n; k)i) (i.e.: the geometric measure of
]S(n; k)i with relation to the completely separable states) [WGO03]. ddition-
ally, in this case it was shown that the bound (3.9) is saturad [HMM+08].
It allows us to compute analytically the generalized robusiess for the states
(3.12) and compare it with the geometric measure. As an illtration, some
examples are shown in Table 3.1.
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1S(2;1)i [ jS(3;2)i | jS(4;3)i | [S(4;2)i
Elue 05 0.55 0.58 0.625
R? 1 1.25 1.36 1.65

Table 3.1: A comparison among multipartite entanglement ofome states
(3.12), given by geometric measure of entanglementE{,,z) - see Ref.
[WGO3] - and the robustness of entanglemenR() - see Ref. [HMM+08].

3.4 Concluding remarks

In brief, | have shown some relations between the geometriceasure of
entanglement and the generalized robustness of entanglemeA lower bound
to R'é with a natural interpretation was derived in terms ofE,, . Examples
were given to illustrate the results.

Since many entanglement quanti ers exist it is important tounderstand
their relation and this, | believe, should be a major goal inhe theory of
entanglement.






Chapter 4

Multipartite entanglement of
superpositions

Given the pure statesj i and j i on a bipartite system, how is the
entanglement of the superposition state

ji=aj i+bji; (4.1)

related to the entanglement of the constituent$ i andj i and to the coe -
cientsa and b? In a recent work [LPS06], Linden, Popescu and Smolin have
raised this question which was shown to exhibit a rich answen terms of
nontrivial inequalities relating these quantities. In orebr to quantify the en-
tanglement, these authors used thdistillable entanglement. However other
entanglement quanti ers can also be used and, in fact, disict bounds for
the entanglement of a superposition can be found depending this choice
[YYSO07, OF07].

In this Chapter | will discuss the route A. Acn, M. Terra Cunha and |
took to generalize the ideas raised in [LPS06] to the multipéte scenario.

4.1 Dealing with the withessed entanglement

I will deal with the previously discussed family of quanti s expressed
by the witnessed entanglemenfsee (2.19)) [Bra05]. For an entangled pure

lIn the case of bipartite pure states the distillable entangement can be analytically
calculated by means of the Von Neuman entropy of the reducedtate [BBP+96].

37
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state = | ih j, the witnessed entanglement can be expressed?as

Ew( )= h jwk ji; (4.2)

opt J

being Wkopt an optimal witness for the statej i (i.e.: a witness satisfying
the minimization problem in (2.19)). This simpli ed way of writing E, will
be particularly useful in our constructions. Let me recalllat several entan-
glement quanti ers can be expressed ds,, and then the present results will
be valid for all those quanti ers.

The main scope of this work is to obtain an upper bound to the Wwiessed
entanglement of the state (4.1) based on the entanglement thie superposed
statesj i andj i and the coe cients appearing in the superposition. In
what follows, | will rst derive an inequality relating these quantities and
then prove its tightness. The witnessed entanglement ¢fi can be written
as

EX,() = max f0; min hjwkj ig
W k2M
= maxf0; min [jg2h jWXj i+ jg2h jwXj i
W k2Mm
+ 2Re abh jwWXj i ]g; (4.3)
an expression that resembles the usual interference patteoriginated by
superpositions. For nite dimension the minimization prolblem is solved using

the so-called optimal entanglement witnes®,,: (inside the setM which
de nes the quanti er). So we can write

EX() = max f0;j a2h jW* j i j B2h jwk j i

opt opt

2Re abh jWK j i g (4.4)

opt

Again, Wkom denotes a witness that is optimal for the statg i. Dierent
states usually have di erent optimal entanglement witnesss. We are natu-
rally led to the inequality

Ey () maxfO; j ajh jW* | ig+maxf0; j B%h jwWX j ig
+ maxf0; 2Re abh jW* j i g

opt

= ja’Ey,()+ jB’Ey()+2max fO; Re abh jw* j i g

(4.5)

2| supposej i to have the kind of entanglement WhichWkDpt is constructed to witness.
Remember that in the multipartite case a state can show di erent kinds of entanglement,
and possibly the setM s tailored to witness one kind of entanglement, whilgj i can show
only other kinds of entanglement.
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where | have also made use of the inequality mé®;a+ by maxf0;ag +
maxf 0; bg. Attention must now be payed to the interference term. The
Cauchy-Schwarz inequality implies

ES () j &’Ey ()+ JO%ES (O)+2 jajg Wk (4.6)

Note that the normalization of the involved kets was used and take the
norm of an operator as its maximal singular value. Expressio(4.6) relates
the entanglement ofj i to the entanglement of each one of the superposed
states (and the coe cients of the superposition) but also deends on the
form of the optimal entanglement witnessW,,. This dependence on the
optimal entanglement witness is expected as the restrictis in W, imply
the features of the entanglement quanti er we are dealing .

At this point it is worth asking if inequality (4.6) can be saturated. Con-
sidering the negativity as a quanti er we can compute/V,,, analytically. For
a given state , it is given by the partial transposition of the projector oro
the subspace of negative eigenvalues of*, where ™ denotes the partial
transposition of [LKCHOOQ]. It is now easy to see that for the two-qubit
statesj i = j00O andj i = j11i, the inequality (4.6) becomes an equality.

In the previous examples | used the fact that the optimal witassW*
is known. Let me now remove this strong assumption. It was sio in Ref.
[Bra05] that the choice ofM (in Eq. (2.19)) being the set ofk-entanglement
witnesses satisfying nl WX ml, wherem;n 0, de nes proper entan-
glement quanti ers. Setting = max(m;n) we have

Ew () Ja’Ex()+ H’ER()+2 jajh: (4.7)

4.2 Are these relations tight?

As the main goal here is to work in the multipartite case it wold be
interesting to nd examples of multipartite states for whid relation (4.7) is
saturated. The main barrier to be overcome in this case is tHact that it
is not known, in general, how to compute multipartite entantgment quanti-
ers. Nevertheless | will show a way of calculating the genalized robustness
of entanglement for GHZ-like states and use this informatioto prove the
tightness of inequality (4.7) regardless the number of pades involved.

As discussed in chapter 2, the generalized robustness of amglement
admits two representations. The rst, given in eq. (2.15), stablishes how
much noise we can mix to a state before it gets separable. Thecend
expressR'g as a witnessed entanglemer, ( ) whenM is the set of witness
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operators satisfyingW* I . I will make use of both de nitions to show that
for the N -qubit family of states
E E
0" +é& 1"
JGHZ\ ()i = P> : (4.8)

the inequality (4.7) is saturated. Clearly if one chooses aarbitrary state
such that the state (; ;s ) is separable for some value & this number s
gives an upper bound for the value oIR'g‘( ). On the other hand, taking an
arbitrary k-entanglement witnessW* for the state satisfying the condition
WK <1, Tr(W¥ ) gives a lower bound toR§( ) according to (2.19). | will
now establish lower and upper bounds fd?‘g(GHZN( )) that turn out to be
equal, getting the exact value of this quantity and also thealue of needed
for the bound (4.7).

Upper bound.Consider, in the de nition of R given by Eq. (2.15),

= JGHZN( )ihGHZ ()] (4.9)
and
= JGHZN( )2 1hGHZ\( )-]; (4.10)
where E _ E
o" €& 1"
JGHZ N ( )»1 = pé : (4.12)

Using the Peres criterion [Per96b, HHH96] we see that

= 'S (4.12)
T 1+s '

has positive partial transposition(according to any bipaition) only for s = 1.
Moreover, for this point it can be directly veri ed that is alsoN -separable.
So we get

Ry (GHZ\( ) I (4.13)

Lower bound. The following operator is a genuineN -entanglement witness
for the state JGHZ \( )i [WGO03, CTO06]:
WN =1 2jGHZN( )ihGHZ\( )j; (4.14)

which clearly satis es the conditionWN < | . Hence, de nition (2.19) leads
to
Tr(WN JGHZ( )ihGHZN( )j))=1  Rg(GHZN( )): (4.15)
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As the upper bound (4.13) and lower bound (4.15) coincide weave that
Rg (GHZ\( )) =1, and can also conclude that the witness (4.14) satis es
the minimization problem in (2.19). It then allows us to extact the value
= 1.
Putting all these facts together we conclude that the inequidy (4.7)
saturates for the class of states (4.8).

4.3 Concluding remarks

| have shown that the notion ofentanglement of superpositiongan be
extended to the multipartite scenario. An inequality relatng the entangle-
ment of two quantum states to the entanglement of the state ostructed
through their superposition was found. This inequality wagroven to be
tight for a family of N-qubit states and a choice of entanglement quanti er.
Moreover a large class of entanglement quanti ers, with bbotoperational and
geometrical meanings, was put in this context.

It is also worth noting that the inequalities derived here ca be extended
to the case where more than two states are superposed [XXH]utére re-
search could include the study of other examples of statescaguanti ers.






Chapter 5

Non-locality and partial
transposition for continuous
variable systems

Since the early stages of Quantum Mechanics the question \liner na-
ture is non-local is the subject of much debate. After J. Bedl derivation
of experimentally testable conditions [Bel87] - known as Beanequalities -
a huge amount of experimental tests of non-locality were deloped, but no
one could de nitively answer this question so far. All of theperformed ex-
periments su ered from loop-holes problem coming usuallydm low-e cient
detection or non space-like separated measurements [GisQ&Xn alternative
for these problems is to use quadrature measurements of theatromagnetic
eld since photons can be easily distributed among distanbkations and can
be e ciently measured by homodyning techniques [GFC+04, GEO5].

There has been little work done so far on Bell inequalities f@ontinuous
variable (CV) systemg, and most of the proposals used some kind of measure-
ment discretization (also termedbinning). Only recently a Bell inequality
dealing with unbounded operators came up. Cavalcanti, Fast, Reid and
Drummond (CFRD) introduced a multipartite Bell inequality where each
part measures two eld quadratures [CFRDO7]. Unfortunatsi the only vi-
olation the authors could nd consists on using a ten-mode stem, which
makes this test extremely di cult from an experimental poirt of view.

During most of the history of quantum mechanics, the concegtof entan-

1There exist several works studying the violation of \standard" Bell inequalities, that
is, with a nite number of outcomes, in CV systems (e.g: [BW99, Mun99, WHG+03,
WHG+03, GFC+04, GFCO05]. Here, | refer to inequalities with a continuous variable
avour, in the sense of an arbitrary number of outcomes. An example of this type of
inequalities could be the entropic inequality given by N. J. Cerf and C. Adami [CA97].
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glement and non-locality were considered as a single feagwf the theory. It
was only with the recent advent of quantum information sciece that the re-
lation between these concepts started to be considered inpdle. On the one
hand, we know that entanglement is necessary for a state to menlocal?.
But, on the other hand, some entangled states admit a localdden-variable
(LHV) model [Wer89, TA06, APB+07]. The situation is even richer due to
the fact that there exist other meaningful scenarios whereeguences of mea-
surements [Pop95, Gis96] or the use of ancillary systems [@&a, MLDO08]
allow detecting hidden non-locality. More in general, theealation between
these concepts is still not fully understood. Clarifying tis relation is highly
desirable, for it would lead us to ultimately grasp the very &sence of quantum
correlations.

One way to tackle this problem is by studying the relation beteen non-
locality and other concepts regularly related to entangleent, such as par-
tial transposition. Let me recall some ideas about the padi transposition
discussed in Chapter 2. The positivity of the partial transpsition (PPT)
represents a necessary condition for a state to be separalfter96b]. Indeed,
partial transposition is just the simplest example of posive maps, linear
maps that are useful for the detection of mixed-state entatgment [HHH96].
A second fundamental result on the connection between paatitransposi-
tion and entanglement was to notice that all PPT states are no-distillable
[HHH98]. In other words, if an entangled state is PPT, it is irpossible
to extract pure-state entanglement out of it by local operdabns assisted by
classical communication (LOCC), even if the parties are alved to perform
operations on many copies of the state. Guided by the similties between
the processes of entanglement distillation [BDSW96] and teaction of hid-
den non-locality, Peres conjectured [Per99] that any stateaving a positive
partial transposition should admit an LHV model. Equivaletly, any state vi-
olating a Bell inequality should have a negative partial trasposition (NPT).

Proving Peres' conjecture in full generality represents enof the open
challenges in quantum information theory. The proof of thiczonjecture has
been achieved for some particular cases up to now: labelifgetnonlocality
scenario as is customary by the numbersi{m; 0), meaning that n parties
can choose amongn measurement settings ob outcomes each, the most
general proof obtained so far was for correlation functiorBell inequalities
in the (n; 2;2) case [WWO01a]. Increasing the number of settings per part or
the number of outcomes per setting are the natural extensisrof this result.

2Remember the discussion about non-locality and Bell inequiities made in chapter 2.
3A related, and perhaps more physical question is whether theviolation of a Bell
inequality implies entanglement distillability. This con nection has also been proven in the

(n,2,2) scenario for correlation Bell inequalities [ASWO02, Ai02, Mas06].
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Here | will follow the last approach and show that the CFRD inquality
with two arbitrary quadrature measurements in each site isat violated for
PPT states. To the best of my knowledge, this is the rst resulon the
connection between Bell violation and partial transpositin for CV systems,
which corresponds to the if; 2;0) with o!1  scenario.

In this chapter | will start by introducing the CFRD inequality for arbi-
trary quadratures and proving that any state violating the nequality must
necessarily be NPT. The key point in the demonstration is th&hchukin
and Vogel (SV) NPT criterion [SV05, SV06, MP06], which will ke brie y de-
scribed. | then proceed to show that no two-mode quantum statcan violate
the generalized CFRD inequality. The present nding were r@ched with A.
Salles and A. Acn.

5.1 The CFRD inequality

In Ref. [CFRDOQ7], the authors present a general Bell inequgl for CV
systems. They use the fact that the variance of any functionfaandom
variables must necessarily be positive. Thus, by choosingnttions of local
observables one can get discrepancies between the quanturd the classical
predictions just using the fact that in the quantum case thes observables
are given by Hermitian operators (usually satisfying nonrivial commuta-
tion relations), while in an LHV scenario the observables arjust numbers,
given a priori by the hidden variables (and obviously commat with each
other). Interestingly, this idea can lead to strong Bell inqualities as it is
the case of the Mermin, Ardehali, Belinskii and Klyshko (MAK) inequal-
ity [Mer90, Ard92, BK93]. More importantly for the present dscussion, the
CFRD approach works for unbounded observables as well, |&agl to Bell
inequalities for continuous variable systems.

Consider a complex functiorC, of local real observable$Xy; Ycg, where
k labels the di erent parties, de ned as:

Y
k=1

Applying the positivity of the variance of both its real (X,,) and imaginary

(Yn) part, and assuming LHV (.e.: setting commutators to zero) we ob-

tain [CFRDO7]: * +
Y

hX,i2 + hY,i? (XE+Yd) (5.2)
k=1
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This inequality must be satis ed by LHV models for any set of bservables
f X«; Ykg, regardless of their spectrum.

If we now choose for each site orthogonal quadratures de n@dterms of
the annihilation (creation) operatorsd (&) as:

%k=’3keik+’3¥eik;

‘kalake i( k+Sk:2)+/a¥ei( K+ Sk :2); (53)

wheres, 2f 1;1g, and denote&, (1) = & and A ( 1) = &, inequality (5.2)

becomes: * +, * +

¥ ¥
Ad(sd) Bacrs (5.
k=1 k=1
| will be rst concerned with this family of inequalities, parameterized by
the choice of thes,. Note that the inequality is independent of the choice of
relative phases .
In Ref. [CFRDOQ7] it was shown that the GHZ-like state

jGHZ i = %(jOi "2 "2+ 00 "j1 ")

violates the inequality (5.4) with the choicesy =1 for1 k n=2 and
sxc= 1forn=2+1 k n,whenevern 10. Moreover it was also shown
that the this violation grows exponentially with the number of subsystems.

As we will see all states violating the inequality (5.4) musbe NPT ac-
cording to some bipartition. In order to prove this fact | wil need to recall
the Shchukin and Vogel's (SV) NPT criterion [SV05, SV06, MP§).

5.2 SV criterion

A necessary and su cient condition for the positivity of the partial trans-
pose of a CV state, given in terms of matrices of moments, wagroduced
and further generalized to the multipartite case in Refs.[85, SV06, MP06].
When dealing with many parties, one must analyze the positity of the par-
tial transposition for a given bipartition of the system. | will say that a state
is PPT when it is PPT according toall bipartitions. Let me brie y introduce
the SV criterion for the multipartite scenario.

For each bipartition of the system, which | will label by the gt of parties
that is chosen to be transposed, a matrix of momentsM' is constructed.

The elements of this rrlatrix are given by:
+

I — Y Yai AP AYKi |iY Vi AKi AYPI AGE .
Mg = araree  alarara’ (5.5)

i21 i21
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prescribed ordering that is not relevant for the present pynoses (see [SV05,
SVO06] for details); andl denotes the complement of, that is, those parties
that are not transposed. | stress that, for xed row and column indices,
the ordering of the operators entering the corresponding i element will
depend on the bipartition| .

Shchukin and Vogel's criterion says that, for a state to be PPaccording
to bipartition |, all principal minors of M' should be nonnegative For
the state to be PPT according toall bipartitions, all principal minors of
all matrices M' must be nonnegative, for all nontrivial bipartitions|. By
nontrivial bipartitions it is meant the exclusion of the bipartition labeled by
I = ;, as well as that labeled byl = N, the entire set, both corresponding
to no transposition at all. In these cases, the criterion sp&s about the
positivity of the state itself, instead of its partial transposition.

5.3 Nonlocality implies NPT

| am now in the position of proving that any state violating the CFRD
quadrature inequality (5.4) is necessarily NPT. As a sake asimplicity | will
rst consider the case of orthogonal quadratures. Then, inhie next section,
I will move to the most general case of arbitrary measuremeimlirections. |
begin by expanding the products in the RHS of inequality (5)Mas follows:

* +
Y 1 1 1 X D E 1 XX D E
N\k"' é = 2—n+ 2[’] 1 il + —2n > il i2 + o
k i1=1 i1=1i2>i 1
1L XX x D E D E
I ﬁillﬁiz Min . t I<T1I<T2 Mn ;
i1=1i2>i1 in 1>in 2
(5.6)

where the number operators de ned afl, ala, were used. Take all but
the last term on the RHS of eq. (5.6) and call their sun$?, so that:

* + * +

Y 1
Kb + 5 = S? + e (5.7)
k k

4The principal minors of a matrix M ' are the determinants of the submatrices obtained
by picking out some rows and columns oM ', while guaranteeing that whenever we choose
to pick row j, we also pick the correspondingcolumn j .
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Note that S? is a nonnegative quantity, since it is given by a sum of expest
tion values of products of number operators, which are alwaynonnegative.
The inequality (5.4) can now be rewritten as follows:
* + * +* +
Y

Y Y
Ky A (s¢) A sx) S?; (5.8)

k k k

where | used the fact thatAY(sy) = Ac( s).

The key point in the proof is to realize that, for any choice othe pa-
rameterssy, the left-hand side (LHS) of eq. (5.8) is just one of the prinpal
minors of M ', provided we choose the bipartitiorl appropriately. The prin-
cipal minor we should look at is:

D
1 E Q Kk Ak(sk)

D :
Q Al s) | /

E

D' = (5.9)

whergd depgends on the bipartitionl, and which we want to take the form
= k "Nk -

Looking at the elements of the matrix of moment#' given by eq. (5.5),
we note that the indices labeling the diagonal element thatds one creation
operator & and one annihilation operatora} in normal order arel, = 1,
ke =0, px =0 and ¢ = 1. The corresponding upper right element is in turn
labeled, for thek part, by I, =0, k¢ =0, pc =0 and ¢ = 1. If we have the
choice of settingsy = 1 we want this to correspond to a creation operator
&) appearing in this position, which means that our bipartitiom must be such
that | includes sitek. Conversely, if we have, for a di erentk, s, = 1, site k
shouldnot be inl.

Hence, if we choose the bipart@Bn asghat labeled bl including all sites

with setting sy = 1, we get | = « N, and thus:
* + * +* +
Y Y Y
D' = K A (sk) A sq) (5.10)
k k k

It follows that a violation of inequality (5.8) implies that D' < 0, and the
violating state must be NPT according to bipartition I, or simply NPT,
which concludes the proof.

Note that if all s, are equal to either 1 or 1, this corresponds respectively
tol = ; orl = N, meaning no transposition at all. As | have mentioned
before, in this case the positivity of the minors speaks noriger of the pos-
itivity of the partial transpose of the state but of the positivity of the state
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itself. A violation for this choice of parameters, thus, wold mean that the
state is not positive semide nite, which is not physical.

5.4 Non-orthogonal quadratures

| now extend the previous result to the case in which two digtict, arbi-
trary quadratures are measured in each site. These quadra&s are de ned
as:

0_ — ik YA k-
>’<‘k0 X e T RES . (5.11)
0= e i(k+ k*+s =2 +/a%(’el( kKt k+ Sk —2);
where agains? 2 f 1;1gand =2< | < =2 quanties the departure
from orthogonality. With these parameters all possible arg choices are
covered, noting that ( = =2; =2 corresponds to measuring only a single
guadrature.

Instead of writing the new inequality as before in terms of tad and &

operators, | de ne new operatord), and f) as:

o RO+ =280 o (RPre = -29e i

5 5 , (5.12)
for s? = 1, such that:
0= fe i+ fyed
<= B i (5.13)

40= Be (%= 4 fgerE =2,

thus mimicking the relation (5.3) between the orthogonal cadratures X
and Y, and the operatorsa} and & . Computing the commutation relations
for these new operators, we arrive aﬁ[;t\i] = COS , independently of the
sp.

Noting that equation (5.13) has exactly the same form as (5.,3and taking
into account that the commutators are neglected in derivinghe inequalities,
we can write the CFRD inequality (5.2) for thenon-orthogonal quadratures
X0 and ¥in terms of thef, and ) operators as:

* +, * +

Y Y
Bi(5:) Bhor o (5.14)

k k

where nowBy (1) = f and By ( 1) = §.
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Despite having reached an inequality identical in form to (&), | am yet
not entitled to make any statements about the state being PPDr not, since
inequality (5.14) is given in terms of operators with di eret commutation
relations. Let me then proceed with a further de nition:

— 1 . — l .
& = p?,skﬁm ¢ = p?skﬁi (5.15)

recalling that =2< | < = 2 and hence cos; > 0. These new operators
satisfy the standard commutation relations ¢&; &/] = 1.
Rewriting inequality (5.14) in terms of & and ¢, we get:
* +, * +
Y p Y 1
cos «C(sk) cos &6, + 5 (5.16)
k k

once more withCy (1) = % and C( 1) = &!. Expanding the RHS as before,
we can rewrite the inequality as:
* Y + * Y + * Y +
Nie Cu(sd) C( ) s?, (5.17)
k k k

where nowNl? &6 and

1 1 1 X D E
cosi, Ni,
i1=1

S® =

- =
kep COS 20 20t

1 XX D E
2 cos i, cos i, Ni N, +:::
i1=1 ip>i 1 (5.18)
13X X
e COS ,COS i, COS; ,
D i1=1i2>i 1 in gi n 2
MilN\iz Min 1 > 0

Applying the same reasoning as before allows to generalire tresult for the
case of two arbitrary quadratures per site.

5.5 Relevance of the CFRD inequality

In this section | will show that, in the case of two parties, te CFRD
inequality is never violated for measurements on two quadi@es per site.
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Thus, in spite of its elegance and conceptual beauty, at pes there is no
feasible schenfeproducing a violation of the CFRD inequality. This remains
as an interesting open question.

Let me start by considering systems of two parties with measements on
arbitrary quadratures. Applying the positivity of the variance for the real
and imaginary parts ofC, (see (5.1)) without neglecting the terms containing
commutators we get:

* +
YZ
hX,i 2 + hY,i? (XZ+ Y2 h [X1: Yi[X2; Yali (5.19)
I {zX2 }

2

The Bell inequality (5.2) follows by setting the right-handside (RHS) of this
inequality to zero, and we are left with , 0, since for LHV models all
commutators are null. So, in order to have a violation we neetb nd a
state such that , > 0. | am going to show that this never happens with the
choice (5.11).
Choosing (5.11) the RHS of (5.19) becomes;4, cos ; cos ,, SO we have

2 4s,S, COS 1 COS ,. If the parameters are chosen to be dierentj.e.:
S; = S, =1 (or equivalently s; = s, = 1), we have that ;

4cos ;1 cos , < O for all quantum states, and then there is no violation
in this case. As we have previously shown for arbitrarg, no violation can
take place for the case in which the parameters are equal,= s;.

5.6 Concuding remarks

The results presented here have consequences both from adihmental
and a practical point of view. First the Peres' conjecture wa extended to
a scenario involving measurements with an arbitrary numbeof outcomes.
This gives more support for the belief that the impossibilit of distilling en-
tanglement is intimately linked to the existence of a localidden model for a
given state. Second, CV Bell inequalities suitable for précal tests are very
desired due to the high control attained in CV photonic expe@ments. How-
ever we have discarded the possibility of using these inedjtias for testing
two mode non-locality. Moreover, out of the family of multi@rtite inequali-
ties, we also discarded those for which &} equal, showing that no quantum

5A feasible scheme could, for instance, consist of (i) a statef a small number of modes
whose preparation requires a few non-Gaussian operationsnd (ii) homodyne measure-
ments.
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state can violate them. A future research could involve thetgdy of CV Bell
inequalities involving more measurements per site [SV08].



Chapter 6

Geometrically induced singular
behavior of entanglement

A geometrical structure follows directly from the de nition of quantum
states: the mathematical set of quantum states is convex aralosed. More-
over, since convex combinations of separable states areoadeparable, these
states form a convex set interior to the set of all quantum stas. Apart
from these direct facts, subtler questions concerning theegmetry of quan-
tum states may arise [BZ06]. In this chapter | will focus on ta following
problems: what is the shape of such sets? Are the boundary dfese sets
smooth? Do they present singularities? Apart from these atract questions
I will discuss a more physical query: Is there any consequenaf the geometry
of quantum states in physical phenomena?

Entanglement is tightly linked to geometry [BZ06]. For insance, many
of the recent attempts to quantify quantum correlations arebased on the
de nition of some distance between entangled states and tiset of classically
correlated states [PV05]. The main goal here is to develop argeral approach
to investigate the e ects of geometry on entanglement. | wilshow that the
non-trivial shape of the boundary of the separable stateset - which is
shown to exhibit singularities - induces singular behaviowf entanglement
in several physical processes, ranging from state transfdéynamics to spin-
chain-ground-state properties [RVF+04, RVF+05, OPMO06]. A experiment
with linear optics was implemented to simulate this e ect ad verify the
theoretical predictions.

The results covered in this chapter were developed in collatation with
P.L. Saldanha, O. Cosme, F.G.S.L. Brandao, C.H. Monken, Badua, M. F.
Santos, and M. O. Terra Cunha.
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6.1 The random robustness as a geometric
microscope

A geometric way to quantify entanglement is to see how far - gy some
de nition of distance on the state space - an entangled stats from the
set of k-separable statesS,. This has been carried over for a variety of
notions of distance, generating di erent measures of entgtement [HHHHO7,
PVO05]. As seen in Chapter 2, one of these geometric quantigis the random
robustness,Rgr (2.14). The physical motivation behind its de nition is clear:

represents a mixture of with the random state = I=D, and Rg ()
guanti es how much of this noise must be added to in order to obtain a
k-separable state. The main result of this section is to shovaat R can be
used to investigate the shape of the boundary &, @%.

Take an entangled state depending smoothly on one parametgrand
compute R as a function ofg. The one-parameter density matrices (q)
can be seen as a curve in the set of quantum states as shown ig.F8.1.
Singularities at @ § will show up as singularities inRK ( (q)), as if we were
probing the geometry ofSy with a\microscope"”. This statement is general
for any nite dimension and will be formalized by the contramsitive:

Proposition 1 If @§ is non-singular, thenR ( (q)) is also non-singular.

A formal proof of this result can be found in Appendix B. Let mansist on
the interpretation: Proposition 1 means that any singulaty in R for a well
chosen path (Q) re ects singularities in @ &.

From this point on, I will specialize on the situation for twoqubits, which
is related to the performed experiment described here. | Witome back to
higher dimensional systems in the nal remarks. For two-qub systems,
Ref. [BV06] shows that the Random Robustness is proportiohto the Neg-
ativity ( N( )). It turns out that, in this particular case, an optimal entan-
glement witnessW,,; satisfying (2.19) is proportional to the partial trans-
position of the projector onto the eigenspace of the negadéiveigenvalue of

Te 1 [LKCHOO0]. Using this fact we can conclude that for every twaubit
entangled state [BV06],

2N()=Rr()= minTr(W ); (6.1)

whereM is the set of entanglement witnessed/ with Tr W = 4.

1Remember that " denotes the partial transposition of .
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FULLY SEPARABLE
S TRATES

k-sepaRARE
STATES

¢ Sie)

Figure 6.1: Probing @S The curved line represents the path (q) followed
by when parameterq is changed. For each value of, Rg is measured
(dotted lines). It is worth noting that S¢ can present singular points in its
shape and to remember that the \true" picture is much subtler given the
large dimensionality of the state space, even in the simptesvo-qubit case
[BZ06].
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6.2 Where do these singularities appear?

At this point we might ask some natural questions. Is there ifact any
singularity in the shape ofS¢? In the a rmative case, does this singularity
appear in any physical setup? | proceed to answer positivelyoth ques-
tions by showing physical processes where a singularity @ $ is revealed by
monitoring the entanglement of a given two-qubit system.

6.2.1 Entanglement swapping

First, let me consider a general system of four qubita, b, A, and B,
subject to the following Hamiltonian [COP+03]:

H = H¥ + H, (6.2)

where | | g
HA = 5 2+ S 2400 2+ 20 6.3)
and an equivalent forH®®. Here , =( x+i y)=2and =( x i y)=2,

where ,, y and , are the usual Pauli matrices. This scenario can be
realized in systems like cavity QED [RMHO1] and trapped ionf.BMWO3].
Set the initial state to bej (t=0)i 5] +i, | +i,Where qubitsabare
in the Bell statej i = (jOOi+j1li)= 2 and qubitsAB are in the orthogonal
Bell statej .i = (jOli + j10))= 2. Hamiltonian (6.2) induces a swapping
process which leads (in the interaction picture) to the foiwing temporal
evolution for the subsystemAB, obtained by tracing out the subsystemah

ag ()= 0] +ih +j+(@ 9 +ih ,j; (6.4)

where = cos?(gt). For this state the negativity reads

1 i1 2q
N(as (D)= Smaxil 2q29 1g= J - g. (6.5)
This function presents a singularity forqg = 0:5 (gt = n =4, with n odd)

signaling then a singularity at@ .

6.2.2 Bit-ip noisy channel

Another physical process which also produces the family altes (6.4)
is the following simple quantum communication task: Alice gpares a Bell
statej .i and sends one qubit to Bob through a quantum channel; if this
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channel has a probabilityq of introducing a bit ip, and 1 g of no error at
all, the state (6.4) is the output of the process.

To illustrate the dynamics given by Eq. (6.4), an all-optichexperiment
which reproduces the noisy channel described above was perfed. The ex-
perimental setup is illustrated in Fig. 6.2. In the experimet, twin photons
maximally entangled in polarization are generated in a nolirear crystal
[KMW+05] and sent to an unbalanced Michelson interferomete The ex-
periment works as follows: a two-photon .i state is produced. While one
of the photons is sent directly to the detection stage the o#@ir goes to the
(unbalanced) interferometer. One of the arms of this integfometer does not
change the polarization of the photon, and if the photon wenthrough this
path the two photons would be detected in .i. However if the photon went
through the other path its polarization would be rotated in sich a way that
the nal two-photon state would becomej .i. A tomographic characteriza-
tion of the photonic states corresponding to these two extneal points was
then performed. The reconstructed density matrices are dikyed in Fig.
6.3. These two possibilities are then incoherently reconmad, thus allowing
the preparation of state (6.4). Each preparation yields a dirent value for
g with the corresponding optimal witness given by

| 2] 4+ih +j; forO0O q 1=2

Wope = 2j +ih 4j; for1=2 q 1

(6.6)

For the family of generated states these two observables ghe only candi-
dates of optimal entanglement witnesses. In a more gener@lation, if less
is known about the prepared state, much more candidate witsses should
be measured. The results are displayed in Fig. 6.4. The bluarge in the
gure shows the witnessed negativity measurement and its gd indicates the
existence of singularities at@S This experimental result shows the abrupt
change in the optimal witness at the valuey = % which heralds the sin-
gularity in @S As a proof of principle, each operatoW is measured for
the whole range ofg, which yields the points bellow zero in Fig. 6.4. Note
that the singularity occurs exactly forRg = 0 (q = 1=2). According to
the present geometrical interpretation, this means the patfollowed by the
parameterized state (q) touches the border ofS 2.

2The simplest way of drawing the complete line represented byEq. (6.4) is to consider
three dierent initial conditions: from | .i one obtainsq 2 [0;1=2), from j +i, q 2
(1=2;1],andg=1=2 is a xed point of this dynamical system.

3This result must not be a surprise, since it is well known that in the tetrahedron
generated by the Bell states (which we access in our experimé the separable states form
a inscribed octahedron [HH96].
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Figure 6.2: Experimental setup.

6.2.3 Spin systems

The geometrical properties of entanglement discussed hegiwe new in-
sight into singularities found recently in the entanglemenof condensed mat-
ter systems. Striking examples, dealing with entanglememiroperties of cer-
tain spin-% models subjected to a transverse magnetic ell, are described
in Refs. [RVF+04, RVF+05, OPMO06]. In these works, the two-gbit re-
duced state shows a singularity in entanglement for a partidar eld value
h; far from the critical eld of the respective model. As corredtion func-
tions, ground-state energy, and even reduced density mateis are all smooth
at h¢, there was no clear origin for these singularities. Our reks o er an
explanation by interpreting the non-analyticities exhibted by entanglement
as a consequence of geometric singularities @S'.

6.3 Concluding remarks

As previously mentioned,RK can be used to probe®§ in any nite di-
mensional system. For example, a previous work showed a sitag behavior

4Although the results of Refs. [RVF+04, RVF+05, OPMO06] were obtained in terms of
the concurrence, a completely analogous result holds for # negativity as well.
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Figure 6.3: The reconstructed density matrices correspoimg (ideally) to
the statesj .i (A. real and B. imaginary parts) andj .i (C. real and D.
imaginary parts). The attained delity for these states are respectively,
F. h 4+jj+i (92 3%andF , h .j j «i (96 3)%.
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Tr(We)

Figure 6.4: Measurement of the mean value of both operatorgstribed in
(6.6) for the fullrange 0 g 1. EachW is expanded as a linear combina-
tion of products of local operators which are then measureddependently.
The blue continuous line corresponds to the theoretical va¢ of N ( (q)) for
the state (q) = qj +ih +j+(@ @) +ih 4j. Note that each W only
witnesses entanglement for a restricted range qfvalues as predicted by the
theory. The local singularity of @Sis evidenced by the abrupt change of
optimal W. Experimental errors are within the dots' sizes.
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of Rg in three qubits systems [BV06]. Within the scope of the presedis-
cussion, we can interpret it as originated by a singularitytthe border of the
respective separable set. Note, however, that in this casiye to the higher
dimensionality of the system, the singularity at@ Soccurs in the interior of
the set of density matrices (not at its border), withRg showing a singularity
at a positive value.

To sum up, | have presented a method for probing the shape ofetset of
separable states. Singularities in this set were found andrmected to non-
analytical behavior of entanglement in di erent physical gstems. It is an
interesting open question to nd physical implications of sch singularities.






Chapter 7

Scaling laws for the decay of
multiqubit entanglement

Entanglement has been identi ed as a key resource for many teatial
practical applications, such as quantum computation, quanm teleportation
and quantum cryptography [NCO0O]. Being it a resource, it isfdundamental
importance to study the entanglement properties of quantunstates in re-
alistic situations, where the system unavoidably loosessitcoherence due to
interactions with the environment.

In the simplest case of two qubits a peculiar dynamical feate of en-
tangled states has been found: even when the constituent paiof an en-
tangled state decay asymptotically in time, entanglement ay disappear
at a nite time [SK02, CMB04, DB04, Dio03, Dio03, DH04, YE04,YEOQG6,
YEO7, SMDZz07, Ter07, YEO7, AJO7, AMH+07]. The phenomenon ohite-
time disentanglement, also known as entanglement suddenatle (ESD)
[AMH+07, YEO4, AJO7, YEOQ7], illustrates the fact that the global behav-
ior of an entangled system, under the e ect of local environamts, may be
markedly di erent from the individual and local behavior ofits constituents.

Since the advantages of using quantum-mechanical systentsimforma-
tion and communication tasks is only apparent in the case ofige-scale in-
formation processing, it is fundamental to understand thecaling properties
of disentanglement for multiparticle systems. Important &ps in this direc-
tion were given in Refs. [SK02, CMBO04, DB04]. In particularit was sthn
in Ref. [SKO02] that (i) balanced GHZ statesj i = (joi ™ + j1i V)= 2,
subject to the action of individual depolarization [NCOOJundergo ESD, (ii)
that the last bipartitions to loose entanglement are the mdsbalanced ones,
and (iii) that the time at which such entanglement disappeas grows with
the number N of particles in the system. Soon afterwards it was shown in
Ref. [DB04] that the rst bipartitions to loose entanglemen are the least-
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balanced ones (one particle vs. the others), the time at whichis happens
decreasing withN. A natural question arises from these considerations: is
the time for which entanglement vanishes a truly physicallyelevant quantity
to assess the robustness of multi-particle entanglement?

In this chapter | will describe the achievements | have madegether with
L. Aolita, R. Chaves, L. Davidovich and A. Acn on this subject. We have
shown that, for an important family of genuine-multipartite entangled states,
the answer for the last question is no. For several kinds of dgherence, we
derived analytical expressions for the time of disappearea of bipartite en-
tanglement, which in several instances is found to increassth N. However,
the time at which bipartite entanglement becomes arbitraty small decreases
with the number of particles, independently of ESD. This impes that for
multi-particle systems, the amount of entanglement can beme too small
for any practical application long before it vanishes. In adition, for some
speci ¢ cases, we were able to characterize not only bipddientanglement
but also to attest full separability of the states. As a bypraduct we showed
that in several cases the action of the environment can nataity lead to
bound entangled states [HHH98], in the sense that, for a ped of time, it
is not possible to extract pure-state entanglement from theystem through
local operations and classical communication, even thoughe state is still
entangled.

The exemplary states we analyzed the robustness of multige entan-
glement are generalized GHZ states:

i oi= joi N+ ojui M (7.1)

with  and 2 C suchthatj j2+j j?2 = 1. Therefore, the present results
also constitute a generalization of those of Refs. [SK02, DB]. Although the
generalized GHZ states represent just a restricted class sifites, the study
of their entanglement properties is important in its own rigpt: these can be
seen as simple models of the Schredinger-cat state [Sch3bgy are crucial
for communication problems [BVK98, HBB99, DP99], and suchtates have
been experimentally produced in atomic [LKS+05] and photdn systems
[LZG+07] of up to six particles.

7.1 Decoherence models
The following three paradigmatic types of noisy channels we studied:

depolarization, dephasing, and a thermal bath at arbitrargemperature (gen-
eralized amplitude-damping channel). Considdd qubits of ground statej0i
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and excited statejli without mutual interaction, each one individually cou-
pled to its own noisy environment. The dynamics of theth qubit, 1 i N,
is governed by a master equation that gives rise to a compléteositive trace-
preserving map (or channel)g describing the evolution as; = E o, where

o, and ; are, respectively, the initial and evolved reduced stated the ith
subsystem [NCOQ].

7.1.1 Generalized Amplitude Damping Channel

The generalized amplitude damping (GAD) cannel is given, ithe Born-
Markov approximation, via its Kraus representation by [NC@, YEQ7]

E®AP | = Eo (Ey+ E; E]+ E, EJ+ E3 ;E}; (7.2)
with r
n+1 . . P—0
Eo ﬁr(JO|h0”+ 1 pjlihy);
E N+l ioing:
r 1 2ﬁ+1pj Js
n P—
E> 2ﬁ+1( 1 pjoihQjj + jlihyj)
and r
n ..
Es 2TT+1leIhOJ

being its Kraus operators. Heran is the mean number of excitations in the
bath, p p(t) 1 e z @™t s the probability of the qubit exchanging a
quantum with the bath at time t, and is the zero-temperature dissipation
rate. Channel (7.2) is a generalization to nite temperatue of the purely
dissipative amplitude damping channel (AD), which is obtaien from (7.2)
in the zero- temperature limith = 0. On the other hand, the purely di usive

case is obtained from (7.2) in the composite Imim!1 , ! 0, and

n =, where is the diusion constant.

7.1.2 Depolarizing Channel

The depolarizing channel (D) describes the situation in whh the ith
qubit remains untouched with probability 1 p, or is depolarized (white
noise)|meaning that its state is taken to the maximally mixe d state|with
probability p. It can be expressed as

E°i=(1 p)i+(PI=2 (7.3)
wherel is the identity operator.
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7.1.3 Phase Damping Channel

Finally, the phase damping channel (PD) - also called dephag - repre-
sents the situation in which there is loss of quantum coherea with proba-
bility p, but without any energy exchange. It is de ned as

E™® i=( p)i+p j0ih0jj j0ih0jj + jlihljj ;jlihljj : (7.4)

The parameterpin channels (7.2), (7.3) and (7.4) is a convenient parameza-
tion of time: p = O refers to the initial time 0 and p = 1 refers to the
asymptotict ' 1 limit.

The density matrix corresponding to the initial state,

0 J olh o (7.5)
= jAoihgj) M+ jA(jlihy) N+ (joihy) N+ (j1ih0j) N

evolves in time into a mixed state given simply by the composition of all
N individual maps: E 1B i By o, Where, in what follows,E will either
be given by Egs. (7.2), (7.3) or (7.4).

7.2 Entanglement sudden death

Here | will use the negativity as a quanti er of entanglemen{fvVWO02]. As
commented in chapter 2, the negativity fails to quantify erdnglement of some
entangled states (those ones with positive partial transgstion) in dimensions
higher than six [Per96b, HHH96]. However, for the states csitlered here,
the task of calculating the negativity reduces to a four-diransional problem.
So, in the considered cases, the negativity brings all thelegant information
about the separability in bipartitions of the states, i.e.,null negativity means
separability in the corresponding partition.

Application of channel (7.2) to every qubit multiplies the o-diagonal el-
ements of ¢ by the factor (1 p)N=2, whereas application of channels (7.3) or
(7.4), by the factor (1 p)N. The diagonal terms {0ihQjj) N and (j1ih1jj) N
in turn give rise to new diagonal terms of the formjQihQjj) N ¥ (jlih1jj) ¥,
for1 k <N, and all permutations thereof, with coe cients  given be-
low. In what follows | present the main results concerning & entanglement
behavior of these states.
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Generalized amplitude-damping channel

Consider a bipartitionk : Nk of the quantum state. For channel (7.2),
the coe cients AP are given by

EAD J j2XN kyk +j jZWN ka; (76)
with
pn pn p(m+1) p(nm+1)
+1: : LA S R
el T omar W oprr M7 oo

From them, the minimal eigenvalue of the states' partial trasposition, AP (p),
is immediately obtained for the GAD channél:

q
e (I 2w (7.7)
Where [ GAD( ) GAD( )]
+
= LK P j N k\P (7.8)
and
«= P e 0 Pa pt: (7.9)
One can see that
[ (/I st () /R @AD(D)J': (7.10)
for N even, and
i Pl P CNﬁ(lo)j; (7.11)

for N odd.

For arbitrary temperature, the condition for disappearane of bipartite
entanglement, $°(p) = 0O, is a polynomial equation of degree I2. In
the purely dissipative casen = 0, a simple analytical solution yields the
corresponding critical probability for the amplitude-deay channel,piP (with

6 0):
PP (k) =minflj= j*Ng: (7.12)

Forj j < | j this is always smaller than 1, meaning that bipartite entan-
glement disappears before the steady state is asymptotilyateached. Thus,

1Since the analized states are permutationally invariant, $A° will correspond to the
minimum eigenvalue of the state's partial transposition acording to all possiblek : N k
partitions. This is also true for the other channels.
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(7.12) is the direct generalization to the multiqubit case fothe ESD condition
of Refs. [YEO4, AMH+07] for two qubits subject to amplitude é&amping. A
remarkable feature about Eq. (7.12) is that it displays no deendence on the
number of qubits k of the sub-partition. The negativities corresponding to
bipartitions composed of di erent numbers of qubits all varsh at the same
time, even though they follow di erent evolutions. In Apperdix D, | will
prove that at this point the state is fully separable.

For arbitrary temperature, it is enough to consider the cas& = N=2,
as the entanglement corresponding to the most balanced bititions is the
last one to disappear (I takeN even from now on just for simplicity). The
condition $22 (p) = 0 reduces to a polynomial equation of degrel , which
for the purely di usive case yields:

. qg —- ——
p? (N=2)=1+2j j=N 1+4) 4N (7.13)

Depolarizing channel

Moving to the case of the depolirizing channel the negatiwitassociated
to the most-balanced bipartition again is always higher thathe others, while
the one corresponding to the least-balanced partition is hsmallest one. The
critical probability for the disappearance of entanglemdnn the N=2 : N=2
partition is given by:

PP(N=2)=1 (1L+4j j=N) = (7.14)

Note that (7.13) and (7.14) always lead to ESD, for 6 0.

Phase damping channel

Finally, for the phase damping channel, whereas the o -diamal terms of
the density matrix evolve as mentioned before, all the diagal ones remain
the same, with [® Oforl1 k N 1. In this case,

M@ j i@ pt: (7.15)

This expression is independent d€, and therefore of the bipartition, and for
any ; 6 0itvanishes only forp =1, i.e., only in the asymptotic time limit,
when the state is completely separablegeneralized GHZ states, subject to
dephasing, never experience ESD
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7.3 The environment as a creator of bound
entanglement

Some e ort has been recently done in order to understand whegr bound
entangled (i.e. undistillable) states naturally arise fron natural physical
processes [PFA07, TKGB0O7, FCGAO08]. In this context, it has éen found
that di erent many-body models present thermal bound entagled states
[PFAQ7, TKGBO7, FCGAOQS8]. In this section | will show, in a comeptually
di erent approach, that bound entanglement can also appean dynamical
processes, namely decoherence.

For all channels here considered, the property

@i o2 ] w(p)] (7.16)

holds. Therefore, whery :(p)j = 0, there may still be entanglement in the
global state for some time afterwards, as detected by otheagitions. When
this happens, the state, even though entangled, is separabhccording to
every 1 : N 1 partition, and then no entanglement can be distilled by
(single-particle) local operations.

An example of this is shown in Fig. 7.3, where the negativityof pBrEitions
1:N 1andN=2:N=2is plotted versusp, forN =4and =1= 2= |,
for channel D. After the 1 : 3 negativity vanishes, the 2 : 2 negivity remains
positive until p= p2(2) given by Eq. (7.14). Between these two values @f
the state is bound entangled since it is not separable but notanglement can
be extracted from it locally. Therefore, the environment gelf is a natural
generator of bound entanglement. Of course, this is not thease for channels
AD and PD, since for the former the state is fully separable gv.° (k) (see
Eq. (7.12) and Appendix D) while the latter never induces ESD

7.4 Does the time of ESD really matter for
large N?

Inspection of critical probabilities (7.12), (7.13) and (714) shows that in
all three cases the ESD time grows wittN. This might be interpreted as the
state's entanglement becoming more robust when the systensize increases.
However, what really matters is not that the initial entangement does not
disappear but that a signi cant fraction of it remains, either to be directly
used, or to be distilled without an excessively large overae in resources.
The idea is clearly illustrated in Fig. 7.4, where the negatity corresponding
to the most-balanced partitions is plotted versugp for di erent values of N.
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Figure 7.1: Negativity as a function ofp for a balanced, = 1:p 2=, four-
qubit GHZ state and independent depolarizing channels. Arilar behavior
is observed with channel GAD withn 6 0O, but the e ect is not so marked
(the smallern, the weaker the e ect).

Even though the ESD time increases withN , the time at which entanglement
becomes arbitrarily small decreases with it. The channel @d in Fig. 7.4 is
the depolarizing channel, nevertheless the behavior is alhstely general, as
discussed in the following.

For an arbitrarily small real > 0, and all states for whichj | & 0,
the critical probability p at which \=2(p) = n=2(0), becomes inversely
proportional to N in the limit of large N. For channel (7.2), this is shown
by setting k = N=2in 22 (p), which simpli es to

Nz (P =0 0@ pNE TN (7.17)

For any mean bath excitationm, xN=2 and zN=? are at most of the same order
of magnitude as (1 p)N?, whereasyN=? and wN=? are much smaller than
one. Therefore, for all states such that j& 0 we can neglect the last two
terms and approximate S22 (p) | (0 p)N=2. Set now

NME(p)= REZO) =@ p)'?) Iog()=N§Iog(1 p): (7.18)

Sincep  pSAP (N=2) 1, we can approximate the logarithm on the right-
hand side of the last equality by its Taylor expansion up to st order in p
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and write log( ) = N7p , implying that
p®AP (2=N) log( ): (7.19)
Similar reasonings, applied to channels (7.3) and (7.4),dé to
pP PP (1) (2=N)log( ): (7.20)

Egs. (7.19) and (7.20) assess the robustness of the stateiaaglement better
than the ESD time. Much before ESD, negativity becomes arlydrily small.
The same behavior is observed for all studied channels, anltla@e cients

6 0, despite the fact that for some cases, like for instancerfohannel (7.4),
no ESD is observed. The presence of logn the above expression shows that
our result is quite insensitive to the actual value of 1.

7.5 Concluding remarks

In this chapter | have probed the robustness of the entangleant of un-
balanced GHZ states of arbitrary number of particles subjéto independent
environments. The states possess in general longer entamgént sudden
death time, the more patrticles in the system, but the time at Wich such en-
tanglement becomes arbitrarily small is inversely propoidnal to the number
of constituent particles. The latter time characterizes biger the robustness of
the state's entanglement than the time at which ESD itself ozurs. In several
cases the action of the environment can naturally lead to bod entangled
states. An open question still remains on how other genuiryemultipartite
entangled states, such as W-type or graph states, behave. iQesults sug-
gest that maintaining a signi cant amount of multiqubit entanglement in
macroscopic systems might be an even harder task than bebevso far.
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Figure 7.2: Negativity versusp for N = 4, 40 and 400, for the depolirizing
channel Bn_d for the most balanced partitions. In this graplsi = 1=3
and = 8=3, but the same behavior is displayed for all other parameter
and maps. The inset shows a magni cation of the region in whicj 2(p)j
vanishes. Even though %,(p)j andj %y(p)j cross the latter and vanish much
later, they become orders of magnitude smaller than their itial value long
before reaching the crossing point.



Chapter 8

|dentical particle entanglement
In Fermionic systems

Quantum correlations can naturally appear due to the indishguishable
character of quantum systems. For example, the state of a paif identical
fermions is always antisymmetric, hence naturally entangtl. This entangle-
ment comes from the indistinguishability of the fermions ash can manifest
itself in one or more degrees of freedom, depending, for exde; on the
spatial shape of the wave function [Ved03]. However, thers an interest-
ing ongoing debate on the possibility of using this strictlyspin-statistical
entanglement to perform quantum information tasks [ESBL0O4AGMO04].

Usually, when talking about entanglement, one tends to igme the role of
the measurement apparatus, always considering ideal sitiens. However,
there is no such a thing as an ideal detector, and the detecttwandwidth
a ects the measurement of entanglement. Furthermore, in & particular
case of identical particles, it is still not clear how the symetry of detection
in external degrees of freedom a ects the entanglement ofdfhinternal ones.

In this Chapter | will discuss the quantum correlations thatnaturally
arises in a non-interacting Fermi gas at zero temperature.nlparticular, |
will analyze how the measurement of external degrees of fieen can a ect
the entanglement in internal degrees of freedom in this sysh. Then, | will
discuss how imperfect detections a ect the observation oihanglement in
the fermionic gas.

A second step consists on proposing a scheme to extract ergkement
created solely by the Pauli exclusion principle. In this s@me two indepen-
dent photons excite non-interacting electrons in a semicdactor quantum
well. As the electrons relax to the bottom of the conduction &nd, the
Pauli exclusion principle forces quantum correlations beeen their spins. It
will be shown that after the electron-hole recombination tis correlation is
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transferred to the emitted photons as entanglement in polaation, which
can subsequently be used for quantum information tasks. Thiproposal is
quite unorthodox in the sense that decoherence, usually wed as an enemy
of entanglement, actually plays an important role in the exaction of this
identical particle entanglement.

The results contained in this chapter are due to collaborains with M.
F. Santos, M. O. Terra Cunha, L. Malard, F. Matinaga, C. Lunks, and V.
Vedral.

8.1 Non-interacting Fermi gas

The symmetrization principle establishes that the quantunstate of two
identical particles must be symmetrized or anti-symmetrigd according to the
particles species. However, in practice no physicist seetoscare about the
existence of other particles that do not take part of the sysim under study.
In his book, A. Peres analyzes this question and concludesath\ (...)it is
hardly conceivable that observable properties of the padies in our labora-
tory are a ected by the possible existence on the Moon of arfeér particle
of the same species(...)". However, until recently there wano formal study
concerning this belief. In what follows | will describe somsteps towards the
understanding of correlations arising due to the Pauli priciple.

8.1.1 Perfect detection

Suppose we pick up two fermion from a non-interacting Fermiag at
zero temperature, one at positior and the other atr® What is the spin
entanglement between them? Vedral showed that the amount ehtangle-
ment between these particles decreases with increasingtaice between
them [Ved03]. He also showed that there is a limit below whichny two
fermions extracted from the gas are certainly entangled. Iparticular, if
both fermions are extracted at the same position, then the Rd exclusion
principle forces their spin to be maximally entangled in a fgical antisym-
metric Bell state. In what follows | am going to brie y review these results
and then present a clearer and more complete explanation tbis behavior
through the analysis of the symmetry of the position deteabin.

The spin density matrix of these selected particles can be ded by

sono = N o) {o(r) {(r) «(r) s(r)i of; (8.1)
wherej oi is the ground state of the Fermi gas,

j ool = spbl(p)jOi; (8.2)
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and the detection operator at positionr and spins is given by,
Z Pt 3p
y(r) = "
) o (2)3
this integral is taken over the Fermi sphere with radiqx (the Fermi's mo-
mentum). The matrix elements (8.1) are second order corrélan functions,
which correspond to measuring these two fermions at positier and r°
The upper limit for guaranteed entanglement can be calculad applying
the Peres-Horodecki criterion [Per96b] to the state (8.1)The following con-
dition for the existence of entanglement holdsf 2 > % wheref (r r9 =
jukejr  rY=(kgjr r9), jr rY is the distance between the fermions,
ke = pr=-and | is a spherical Bessel function. This condition establishes
region0 jr r9<re wherere is the solution off 2 = 1=2, for which the
fermions are found to be entangled.
In order to get an interpretation of this result let me arriveat his result
in a di erent way. De ne new detection operators:

( s(r) so(r%p'\" so(r) s(r%).

e PH(p): (8.3)

ey

(8.4a)

2
( s(r) so(r%p_ So(l’) s(r%):

ol I
ssol C) >

(8.4b)

The operator o <), detects the antisymmetric (symmetric) spatial part
and the symmetric (antisymmetric) spin part of fermion wav&nction.
In terms of these new operators, Eq.(8.1) becomes:

ssott0 = %h ol @(ir9+ Gl enr)+  o(nir9li of  (8.5)

Note that written in this way, the two-fermion density matrix is the sum of
four di erent terms, two of which contain only symmetric andantisymmetric
spin detectors. The other two are the crossing terms, whichamish due to
the exclusion principle (spin and position of two fermionsannot be both
symmetric or antisymmetric). The remaining terms are:

1

sym — éh o) ;X(r;rc) ;-so(r;r()j ol ; (8.6a)

1, . o
asym — 2 h o t{o(r; I’% sSo(r; r %j ol : (8.6b)
Here ¢ takes into consideration only the symmetric spin functiontbere-

fore, it is related to the detection of the antisymmetric par of the spa-
tial wavefunction) while .sym contains only the antisymmetric spin function
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(therefore related to the detection of the symmetric part othe spatial wave-
function). The density matrix can be rewritten as:
= +

- asym sym g

Z Z 3

0 1
1 i PO 19 % 1 1 §
dpd;?éB (1+¢€ ) 11

IW ©

0
2
+ (1 PP f%% 1 1 (8.7)

2

>N =
"W

First, note that, as expected, forr = r% the antisymmetric spatial function
goes to zero, and the spin wavefunction has to be antisymmietr( rst term
in Eq.(8.7)). Forr r%6 0 both parts contribute. Note, however, that the
symmetric spin density matrix can be viewed as an equal weigixture of
the three triplet components, and has no entanglement at all The spin state
in EQ.(8.7) represents a convex combination of singlet s&tand the equal
mixture of triplet states. It will have entanglement i the fraction of singlet is
su ciently larger than the fraction of triplets. Inthe limi tr r® 1=k, as
the integrals on Eq.(8.7) are performed over momenta beloweé (momentum
equivalent of) Fermi surface the momentum dependent termssaillate too
fast, and average to zero. Therefore, the spin density matrbecomes just
the identity ( s tos0). This behavior can be seen as a smooth transition from
a quantum statistics (Fermi-Dirac) to a classical one (Maxeil-Boltzmann).

8.1.2 Imperfect detection

An interesting question arises when considering non-punel (non-ideal)
position detections, i.e. more realistic apparatus that dect the position
of those fermions with some incertitude. Instead of Eq.(8)3the detection
operator should be written as the general eld operator:

Z Z
o(r) = P D(r  r%hy(p)drYp: (8.8)

The perfect position measurement situation is the particalr case of Eq.(8.8)
corresponding toD(r % = (r r%. However, ifD(r r% has some

1This again can be seen from the Peres-Horodecki criterion.
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position uncertainty, like, for example, if it is describedby a gaussian with
spread

o . L ir %9
D(r r9—92?e 27 ] (8.9)
then, the eld operators becomze .
S(r) = p;? g% by(p)drYp: (8.10)
These operators, when substituted back in Eq.(8.1), give:
ssOtt0 = st sot(’]c (d, )+ st0 sotg(d; ); (8.118.)
with d=jr r§,
2
f(d; )= ST 7 (8.11b)
5 id id
ezz, [ id ..
od; ) = —erf(pr  5-) erf( 59)i% (8.11c)
where erfk) is the \error function”, de ned via:
Z X
erf(x) pZ: e “dt; (8.11d)

0

In order to make clearer the behavior of entanglement in reian to
changes ind and we can compute the negativity of the state (d; ;p+):

29
4 29

This function is plotted in Fig. 8.1 for some values of .

Note that, for imperfect position detection, the entanglerant decreases
as the detectors become apart from each other, but increaséshe spread
in the detection becomes larger. The fact that inaccuracy ithe detection
increases entanglement may seem surprising at rst sight. dwever it has
to be noted that as our knowledge in position gets worst, oumlowledge in
momentum gets better. In the limit of in nite spread, both detectors become
perfect momentum detectors (centered gb = 0, see Eq.(8.9)), which means
again that their spin wavefunction should be totally antisynmetrized, hence
they are found in the antisymmetric Bell state. It is important to stress that
Eq.(8.8) describes a coherent combination of localized cebperators instead
of a statistical average of them. That is the reason for the inite spread
limit be a momentum-localized detector instead of just a vage \there is a
particle somewhere".

N( ) =maxfQ;

g (8.12)



78 IDENTICAL PARTICLE ENTANGLEMENT

Figure 8.1:N( )vs. dforpf =1and =1 (red), =2 (green)and =4
(blue).

8.2 Useful entanglement from the Pauli prin-
ciple

In this section | would like to make the previous discussioress abstract
and propose a way of observing this fermionic entanglement a realistic
system.

Consider that one excites a semi-conductor from its electriz ground
state by exactly promoting two electrons to the conduction &nd. These two
electrons will be described by some quantum state with momtaim and spin
distribution. Due to phonon scattering, no matter the initial polarization,
in a short time scale the spin state will be essentially rando (supposing
no energy di erence between the possible polarizations). itN the condition
that relaxation time ( p) is much shorter than recombination time (en), the
electronic momentum distribution will tend to the bottom of the band. In
fact, the quantum state will tend to the \ground state" of the band, which
can be viewed as null momentum spin singlet, due to the Pauliripciple.
By the same time, but in a statistically independent way, elgrons in the
valence band also relax, with the net e ect of promoting the dles to the top
of the band. Also supposing that the relaxation time of the Hes is much
shorter than recombination time, there will be a singlet of dles in the top of
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the valence band. In this scheme, quantum correlations weceeated by the
Pauli principle through relaxation. The remaining questio is whether these
correlations can be used to implement some quantum protocol

Continuing with the argument, let me assume a selection ruléor the
radiative decay: electrons with spin +£2 ( 1=2) can only decay emitting
photons circularly polarized to the right (left) (Fig. ??B). After both elec-
trons have decayed we will therefore obtain two photons in agfarization
entangled state, which can be used for di erent quantum infonation pro-
tocols. | emphasize that this state is only obtained due to # existence of
fermionic entanglement between the electrons.

The idea described in the previous paragraphs can indeed bgpiemented
in solid state physics. Two independent photons coming frosingle photon
sources are used to create two electron-hole pairs of di etek% and spins
in a semiconductor quantum well. The system rapidly relax téhe bottom
of the conduction band. The electrons then emit photons reo@ining with
the holes in the valence band. For the argument presented bed to hold,
conduction and valence bands relaxation processes have ® imuch faster
than the recombination time, which is the case in semicondtas (typically

b 10'?sand ¢ 10 °s [Fat05]). Note that the emitted photons will
be entangled in polarization no matter in which direction tley are emitted.
However, in order to enhance the spontaneous recombinatiprocess and to
give a preferred direction for the emission (also enhancitige probability of
detection), the semiconductor can be placed inside an opiccavity [Yam91,
WNIA92, BMYI191]. After escaping the cavity, these photons an be used for
guantum information.

8.2.1 Selection rules

Take semiconductors of the group I11-V [YC96] for which the @nduction
(valence) band has orbital angular momentunk. = 0 (L = 1). The valence
band has two branches corresponding to heavy-holek, & 3=2) and light-
holes g, = 1=2) which are degenerate ak = 0 for bulk semiconductors.
But in a semiconductor quantum well this degeneracy is liftto due to the
con nement in one of the directions. Each new valence bandiléthas the
usual free-particle dispersion relationE / k?) around the energy gap, but
the gap itself is smaller for the heavy-hole electrons. Thefore, by shining
light of the proper frequency, it is possible to selectivelgxcite electrons from
the heavy-hole band without ever touching the light-hole oes (see Fig. 8.2).
The electrons are excited by dipolar interaction, which mew that there will
be a selection rule that couples each eigenstate in the hedwle band to a
partner in the conduction band, depending only on the photopolarization
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(see Fig. 8.3).

Figure 8.2: Band structure for the semiconductor quantum well -
For each value ofk there can exist just two electrons according to the Pauli
principle.

8.2.2 From fermions to photons

Let me now treat in some details what was described above. Sigse
we have a semiconductor quantum well with exact two excitatns with well
de ned momentum k above the ground state (full valence band). Consider
the creation operator of two particles (electron + hole):

(k) = el(kh{( k); (8.13)

where €/(k) (resp. h¥(k)) creates an electron (hole) in the conduction (va-
lence) band with logical spins and momentum k. The spin notation is

utilized to emphasize correlation in the creation procesand the follow-

ing correspondence between the real spins with the logicadis is implied

through the text:

joi | jai
electrons| -1/2 | 1/2 |
holes | -3/2 | 3/2

The spin state | am going to analize can be described by a spirerity
operator for the electrons and holes determined (up to norrtization) by the
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Figure 8.3: Selection rules - The following transitions are considered:
J,= %% J,= 3 through an emission/absorption of a . photon, and
J; = % $ J, = % through an emission/absorption of a  photon.

correlation function [Ved03, DDWO06]:

o = ol o (K) ro(k) ¢(K) oK) | ok (8.14)
o & (Kyeo(k)el(k)el(k) ¢’ -
0" he( Khe( kY Khk( k) "

E
where 5;” gh) denotes the electron (hole) initial state (vacuum)

and j ol is their tensor product. As the operators obey fermionic ant
commutation rules

[e(k); eo(K)+ = o0 (kK K9 (8.15)
(the same forhg(k)), we have
rr 0ss0 = ( rs0 r0s rs roso)z: (816)

Note that | have used a shortened label to represent the matrielements
(8.14). In the electron-hole-electron-hole ordering, thioperator is a density
matrix representing the (unnormalized) state

. 1 3 1 3 1 3 1 3
T T T A _
J 1 > >t T5 55 3 5 (8.17)
In order to enhance the emission process, and also to havetoolrover the
emitted photons, the sample can be placed within an opticabeity in reso-
nance with the transitions we are interested in [Yam91, WNI&2, BMYI91].
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By the selection rules described above, the emitted photossate is
[T I N I (8.18)

which is a maximally entangled Bell state. Note that it is esntial that the
electrons have the same momentum for the creation of a maxittyeentangled
pair of photons.

We are interested in creating entangled photons from indepédent ones,
and that is where decoherence plays an important role. Indepdent photons
create electrons of di erentk%. However, the incoherent energy losses to the
network phonons end up dragging those electrons to the coradion-band
ground state (similarly the holes), where both of them havehie samek =0
momentum! Taking into consideration the selectivity of thedecay process,
the photons will indeed be emitted in the Bell state of Eq. (&8).

8.2.3 Some imperfections

The scenario that was discussed up to now is pretty much idezgd. It is
important to stress, however, that one very robust point indvor of this pro-
posal is its independency on the speci ¢ model of decoherengsed. When-
ever the imposed conditions on the time scales are ful lledhe state of the
system before recombination will be very close to the one leedescribed.
And so the state of the emitted photons.

One posible way to mimic the e ects of the imperfection in ths approach
is to consider a broadening in the momentum distribution, agh also an im-
perfect coincidence of the momenta. This can be taken into @nt by
modifying Eq. (8.13) to

2z
sk = flg KFR  R)el(k)h{(R;)dk dR;: (8.19)

This operator creates an electron with spirs and momentum distribution
given by the function f (k; k), and a hole with spins and momentum
distribution given by f (R, R). Later | will associatek = R 2. With this
operator, Eq. (8.14) can be rewritten as

2This association re ects the fact that an electron moving to a certain direction is
equivalent to a hole moving to the opposite way.
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Z
w0 = Fo(ko K (ki K)f(ke K)f (ks K9

D E
Z © g (ko)ero(ke)el(ko)lu(ks) (2 dko:iidks
f Ry RF (Rt ROF(R, RIF(Rs RY

D E
& he(Ro)hro(R)MY(R)NL(Ra) 5 dRo:::0Rs:
(8.20)

Anti-commutation rules (8.15) imply that the only non-null matrix ele-
ments are:

0000 = 1111 (8.21a)
= (LK) MGKN(BRRY M (R;RY;
o101 = 1010 = L(k; K)B(R;RY; (8.21b)
0110 = 1001 = M (k; KM (R; RY; (8.21c)
where z
L(k;k) = dkodkajf (ko  K)j%jf (ki K9j?; (8.22a)

Z
M(k:k) = dkodkef (ko K (ki KOf (ks K)f (ko k%; (8.22b)

with similar expressions for€(R;R9 and 1 (R;RY) by changingk 7! R and
KO7! RC
The emitted photons (non-normalized) polarization state Wl thus be:

O(L M)E @) '

B LE M §
- b S

(L MYE 1)

where | leave blank the null entries. Note that wherk = k®and R = R
hold,L=M andE= M, giving a maximally entangled photonic state. No-
tice the generality of this result: state (8.23) is written n terms of arbitrary
momentum distributions of the electrons before the decayinprocess. For
illustration, a chart of the entanglement between the two pbtons (charac-
terized by the negativity) versus the di erence in momentundistribution of
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Figure 8.4: Photonic entanglement (negativity) versusl = jk k9. Green-
dotted line: = 2, black-solid line: =4, red-dashed curve: =6, where

is a measure of the width of the momentum distribution, assued the same
for electrons and holes (see Eq. (8.24)). We see that the gerathe spread
in the momentum, the higher the entanglement between the phans. This is
due to the fact that wider momentum distributions blur the dierence in k's,

so that once again it is impossible to distinguish the eleans by momentum.

the decaying electrons is displayed in Fig. 8.4. | have chosa Lorentzian
distribution of spread centered ink (k9 for the momentum distributions,
ie.:

flk k)= R (8.24)

8.3 Concluding remarks

In conclusion it was shown that the measurement apparatusajs a cen-
tral role in the entanglement of identical particles. The fat that entangle-
ment increases because of broadening in detection can souvelrd at rst.
However it is important to say that the detections discussediere are done
in a coherent way (as in most of real cases).

Concerning the semiconductor proposal, | stress once ag#mat the ori-
gin of the entanglement lies in the femionic nature of the ed&rons. This gives
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a decisive positive answer to the question whether identieparticle entan-
glement is useful for quantum information purposes. Spedaially, identical-
particle entanglement can in fact be extracted and converdeto usual en-
tanglement, and one important ingredient in this convertility is the use of
more than one degree of freedom.

Finally, | would like to emphasize the role played by the coumg to the
environment in the discussed scheme. Usually, decohereiscgeen as the road
from quantum to classical, implying information loss and @nopy creation,
which makes it a plague for quantum information tasks. Howev, a very
special situation occurs when decoherence is dictated by alltemperature
heat reservoir: after a transient time, the system asymptatally approaches
its ground state. Whenever the ground state is nondegeneeatthe result of
null temperature decoherence is a pure state. When the systen question is
composed, decoherence leads to statistical mixture, whitdnds to wash out
entanglement. However, if, at zero temperature, the nondegerate ground
state is also entangled, decoherence can actually creatdamgled states!
That is a central part of the proposed scheme: here, decohece plays the
crucial role of washing out the distinguishable origin of té input photons,
allowing the extraction of entanglement from the Pauli prigiple.

Let me nish this chapter with a more practical issue. ldeall, the de-
scribed setup could be viewed as a practical entangling maah, where the
input is a two photon unentangled state and the output an entagled state.
Moreover, this machine would work on demand,e.: whenever we input two
independent photons we receive back two entangled photons.






Chapter 9

Conclusions and Perspectives

Understanding entanglement is one of the biggest challersgphysicists
are faced with. A lot of e ort has been employed to get a compie theory of
this resource, and also to apply it in real tasks. There areiBtmany questions
involving entanglement, and some of them were not even citéal this thesis.
The experimental production and use of entanglement in dient systems
and scales, the computational hardness of classically silating quantum
e ects, and the link between entanglement and quantum phasgansitions
are just few examples of these questions. All these points kesentanglement
characterization one of the most interdisciplinary brancbes of Physics.

In this thesis | have presented some results on the charadition of
entanglement | could address during the last years. Altholgthe present
contribution represents just few steps on entanglement toey, | hope they
can help to give a better understanding and to motivate futug research on
this eld. 1 would like to nish this text by raising some futu re research that
could follow the presented ideas.

| have shown a connection between two entanglement quantrg the gen-
eralized robustness of entanglemenR() and the geometric measureEgve ).
This was made trough a lower bound tdRy based onEgue . It would be
interesting to nd additional examples where this bound isight and to seek
for the geometrical explanation of this fact. Furthermore Wenever we have
a way of calculating one of these measures, this gives a bodndthe other.
This might be useful because these quantities have also ogtnal appeals
[HMM+05, Bra07]. Seeking for relations among other entanginent quan-
tiers is also desirable as it can lead us to a better understaling on the
di erent forms of entanglement quanti cation.

Chapter 4 presented improvements on two big dilemmas conoérg en-
tanglement and non-locality. The rst is the Peres' conjeatre that undistil-
lable states never violate a Bell inequality. | have shown aaptial proof of
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this conjecture for the CFRD inequality by showing that all volating states
are NPT. A complementary result would be to prove that all vitating states
are distillable. Further generalizations could considertber Bell inequalities,
including those ones involving many measurement settingepsite. On the
other hand, nding a bound entangled state which violates a 8l inequality
would disprove Peres' conjecture The second big issue on this theme is to
nd appropriate tests to prove non-locality, i.e.: loop-hole free experiments.
Quadratures of the electromagnetic eld is a promising dege of freedom
where this tests could be proposed. First, photons can be tlibuted over
long distances using optical bers or even in free-space. c®ad, quadrature
measurements attain incredibly high e ciencies through homodyning.

Concerning the study of the geometry of entanglement | hopéé¢ pre-
sented method for investigating the boundary features of garable sets can
give us a better idea on the mathematical description of quaum states.
It is interesting that singularities in these sets appear irphysical phenom-
ena. An open question consists in looking for physical cogsences of these
singularities (if any).

Many are the open questions on the entanglement propertiesdecohered
states. First, a whole line of research consists in the stuayf the quantum-
classical transition, and entanglement certainly plays a ajor role in this
arena. Furthermore, as said before, it is crucial to undemshd the degra-
dation of entanglement in real protocols since it is a valud resource. In
this sense further studies should include other multiparte states €.9: W,
cluster, and CV states) and other decoherence models. In tlead the big
qguery is whether scalable quantum computation is possible.

Finally, the entanglement properties of many body systems iamong the
hottest lines of research nowadays. The Fermi gas is a rst ppoximation
for many systems and it is then important to understand the fatures of this
model. Moreover, we could propose a realistic system wheieetdiscussed
e ects could be seen. In my opinion, an implementation of tki scheme, if
feasible, would be interesting not only from a fundamental i also from a
practical point of view.

IHere | mean bound entangled among all the partitions.



Appendix A

Multipartite entanglement

In this chapter | will discuss in more details the di erent kinds of multi-
partite entanglement.

When several parts are involved we can have di erent notionsf entan-
glement, depending on the partition we apply to this state [Z00, DCT99,
ABLSO01, EGO06]. For example, in a tripartite scenario, sometates can be
written as

ABC _ AB C. (A.1)

where “B is an entangled state. This state is separable according tbet
partition ABjC and can be built by joint operations on particlesA and B
and independent single operations o@. Hence it is said that such a AB¢
has no tripartite entanglement.

We could go further in the classi cation of entanglement andle ne convex

combinations of states like (A.1).e.:
X
= p® FHagd e (A.2)
P

with pi;g;r;  Oand ,p+ g+ r; =1. To build these states we again do
not need to perform joint operations on the three particleshut instead can
use just (classically) correlated two-particle operation Because of that fact,
states (A.2) do not havegenuine tripartite entanglement. However some
them do have entanglement among the three particles, sinceely cannot be
written as (A.1) for example. This classi cation can be exteded for states
composed by more than three parties straightforwardly.

Note that each one of these sets is convex. Fully separablatss form a
subset of the set of biseparable states like (A.1), which byé¢ other hand is
a subset of the set of states like (A.2), and so on. We thus hasehierarchy
of entangled states, and we can see the set of quantum statescemposed

having an onion-like structure (see Fig.A.1).
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Figure A.1: State space structure.

As commented in Chapter 1, when talking about multipartite etangle-
ment we can de ne dierent kinds of separability. Suppose atate can
be written as a convex combination of states which are produof k tensor
factors. The state is then said to be ak-separable state. One should note
that in a system ofn parts, n-separability means that none of the subsystems
share quantum correlations with the others. Besides, evesjate is trivially
1-separable. The set ok-separable states will be denoted b$y. It is clear
that S, S, 1 :: S;= D,whereD denotes the set of density operators.



Appendix B

RY as a detector of singularities
In Sy

In this Appendix we aim to prove Proposition 1, in Chapter 6. This can
be done in a more general way through the following result:

Proposition 2 Let D be a closed, convex set. L& D also be closed

and convex, with a point in the interior of S. If @Ss a C™ manifold and

the states (q) describe aC™ curve in D with no points in the interior of S

and obeying the condition that the tangent vecto°(q) is never parallel to
(9), then Rg( () is also aC™ function.

One must remember that a manifold is callecC™ if it can be parameterized
by functions with continuous derivatives up to orderm [?]. The reader can
changeC™ by smooth, in the usual sense @&? , with almost no loss (actually,
we use smooth throughout this Letter in the less precise sensf \as regular
as necessary"). Other topological remarks before the prodhe fact that S
has interior points implies thatS and D have the same dimensionality (since
there is an open ball oD contained in S), and the proof will use the notion
of (topological) cone, which simply means the union of all gaments from a
given point V to each point of a given sefA: this is called the cone oA with
vertex V.
Proof: The geometrical situation leads to the cone, given byp(q 7! p +
(1 p) (0, p2 [0;1]. The condition on the tangent vector (together with
the fact that is interior to S, while (g) has no point in this interior) is
su cient for this cone to be C™, except at the vertex , at least locally in q.
As S is bounded and convex, and is in its interior, every straight line
from crosses@ Sexactly once. As (g) has no point in the interior of S,
this crossing always happens for 0 p < 1. Denote this crossing value by
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p.(Q). The curveq7! pc.(9 +(1  pc(q) (g is C™, implying p.isaC™
function of g.

The random robustness is given bRRg ( (Q)) = lp°pc. As p. < 1, we also
obtain that Rg is aC™ function of g.




Appendix C

Experimental Setup

In this appendix it will be shown the details of the setup usedn the
experiment described in Chapter 6.

Figure C.1: Experimental setup.

The state source is composed by a 2mm-thick BBO {BaB,0,) nonlinear
crystal (C;) pumped by a cw krypton laser operating at 413nm, generating
photon pairs at 826nm by type Il spontaneous parametric dowoonversion.
Crystal C; is cut and oriented to generate either one of the polarizatio
entangled Bell statesj i orj .i. Walk-o and phase compensation is
provided by the half-wave plate H followed by a 1mm-thick BBO crystal
(C,) [KMW+05], together with two 1mm-thick crystalline quartz plates (2)
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inserted in one of the down-converted photon paths. The unoeerted laser
beam transmitted by crystal G is discarded by means of a dichroic mirror
(V). The detection stages are composed by photon countingadie modules
D, and D,, preceded by 8nm FWHM interference lters ik and F, centered
at 825nm, and by circular apertures A of 1.6mm and A, of 3.0mm; . Single
and coincidence counts with 5ns resolving time are register by a computer
controlled electronic module (CC). Polarization analyzexr are composed by
guarter-wave plates Q and @, half-wave plates H and H,, followed by
polarizing cubes R and P,. The State Source produces statg i. For
each pair, the photon emerging in the upper path goes straigto the po-
larization analyzer and to the detection stage 1. The lowergth photon is
directed by mirror M3 through the circular aperture Ag into the state mixer
(an unbalanced Michelson interferometer), composed by tHseam splitter
BS, mirrors My and Ms, quarter-wave plates Q and Qs, variable circular
apertures A, and As, and by the half-wave plate H, whose purpose is to
compensate for an unwanted slight polarization rotation agsed by the beam
splitter. The quarter-wave plate @ is switched o which means that if the
lower photon follows path labeled 4, there is no change to ifsolarization
and the half-wave plate H changes the state tg .i. On the other hand,
if the lower photon follows path labeled 5, @ is oriented with the fast axis
at 45 in order to ip its polarization. The path length di erence, 130mm,
is much larger than the coherence length of the down-conved elds, en-
suring an incoherent recombination at BS. The pair detectetty CC is in
stateqg +ih +j+(1 0)j +ih .jwhereqis de ned by the relative sizes of
apertures A, and As.



Appendix D

Full separability of GHZ states
under the Amplitude Damping
Channel

Here we prove that the amplitude damping channel leads theae (7.1)
to a fully separable state when all of its bipartite entangleents vanish.

Proof: First of all note that the evolved density matrix can be written
as = j j3(joihgjj) N + 5, where s is an unnormalized state. The goal
is to show that ¢ is fully separable. This will be done by de ning a fully
separable state and showing alocal measurement protocol, a local POVM
[?], which transforms into ¢ with certain probability. Because only local
operations are applied we will conclude thats, and then , must be fully
separable.

The (unnormalized) state isdenedas = 21 p)Nfl+(joih1jj) N+
(j1ih0jj) Ng, beingl the 28 2N identity matrix. State is GHZ-diagonal
(see def. in Ref. [DCO00]) and all of its negativities are nullHence, by the
Duar-Cirac-Tarrach criterion [DCT99], is fully separable. Cansider, for each

qubit i, the local POVM fAY 2., with elements A’ = ( 25j0ih0jj +
jlih1jj), where is such thatA(li)yA(li) I,andAg)yA(zi) =1 A(li)yA(li). One
can see that by applying this POVM for every qubit of state , when the

measurement outcome isn = 1 (corresponding toA;) for all the qubits, the
nal state is nothing but .
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Appendix E

Resumen

La mea@nica cuantica fue concebida como una teora capade describir
los feromenos fsicos a nivel abmico. Rapidamente fueaplicada en otros
casos como el estudio de la disperson de las partculas yeda interaccon
entre la luz y la materia.

La primera crtica importante a la teora cuantica fue he cha por Einstein,
Podolski y Rosen (EPR) en su artculo titulado "Can quantummechanical
description of physical reality be considered complete?EPR35]. Estos au-
tores resaltan que a pesar de que la teora cuwantica aciertal describir cor-
rectamente muchos feromenos fsicos, tamben permite dcer predicciones
extranas como la accon instananea entre objetos distdes. En el fondo, el
argumento expuesto por EPR estaba basado en la posibilidaé tener un
estado entrelazado. Basandose en las criticas de EPR, 8dmger llano la
atencon sobre el hecho de que alguno estados clanticosqulen ser mejor
entendidos cuando son investigados como un todo y no a trawle cada uno
de sus subsistemas [Sch35].

Muchos anos desptes J. Bell puso esta discusbn en unaittwnmas rme.
Aceptando la idea de realismo local introducida por EPR, Bletlesarrolb
sus famosas desigualdades incluyendo estadsticas de idad hechas en sis-
temas compuestos [Bel87]. A partir de entonces la discustacerca de la
no-localidad de la meanica cuantica poda ser hecha a univel experimen-
tal. Unos anos desples los primeros resultados experirtedas usando las
desigualdades de Bell fueran reportados [FC72, FT76, AGG8ADG82] y
dieron fuerza a la creencia de la no-localidad de la meaaicwantica. Dado
estados que no son entrelazados nunca podran violar unasifpualdad de
Bell, estas pruebas pueden ser vistas como las primeras oseones exper-
imentales de entrelazamiento.

Hasta los afnos 90, la discuson acerca del entrelazamierge hizo a un
nivel mas fundamental, el de los pilares mismos de la tearcuantica. Fue
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desples de las primeras propuestas de protocolos de infagon cuantica,
gue el ermino "entrelazamiento” pas a tener una connotaon de "recurso”,
capaz de proporcionar ventajas sobre las maneras chsiaesprocesar infor-
macon [NC00, BEZ00]. En 1991, un protocolo de criptograd totalmente
basado en el entrelazamiento fue propuesto [Eke91]. Paraates ya se
saba que el entrelazamiento no era algo necesario para gatizar la seguri-
dad de la comunicacon [BB84, BBD92]. Quizas fue el descuimiento de la
teleportacon cuwantica el cambio mas grande en la teoralel entrelazamiento
[BBC+93]. Desde entonces qued clara la importancia de @&stecurso para
aplicaciones practicas.

A partir de ese momento la teora del entrelazamiento emp®au propio
camino y garo el status de disciplina independiente. Entri®s objetivos prin-
cipales de la teora del entrelazamiento estin el desarito de un formalismo
matematico que pueda describir este recurso, la husquedkte sus aplicaciones,
la investigacon de la conexon del entrelazamiento contms feromenos fsicos
y, volviendo a aspectos nmas fundamentales, la importancidel entrelaza-
miento para los fundamentos de la meanica cuantica. Actaimente la liter-
atura acerca del entrelazamiento es enorme. El objetivo deegesis no es pro-
porcionar una revison en este tema, pero contribuir con selltados originales.
Revisiones acerca del entrelazamiento pueden ser encotit® en las referen-
cias [HHHHO7, AFOV07, PV05, Bru02, Ter02, PV98, Ver02, EidQ EPO3].
Las cuestiones abiertas acerca del entrelazamiento vandkesu descripcon
matematica hasta su utilizacon. Entre todos esos aspeos, en esta tesis yo
aborck agtellos que mas me motivaron durante mi doctorad.

A pesar de que la de nicon matenmatica del entrelazamiend es sencilla,
el problema de determinar si un estado cuwantico general astntrelazado o
no es muy difcil [Ter02, HHHHO7]. Una de las ramas nmas imptantes de
la teora del entrelazamiento se centra en encontrar £dnas que sean ca-
paces de resolver este problema. El paso siguiente, despde determinar si
un estado est entrelazado, sera determinar la cantidade entrelazamiento
presente en el sistema [PV98]. Para esto se usan los cuar@dores de entre-
lazamiento, un conjunto de reglas que se puede aplicar a umael® clantico
para decidir su contenido de entrelazamiento. Una de las preras maneras
de cuanti car el entrelazamiento fue determinar la capacabl de cada es-
tado en realizar tareas de informacon cuantica [BBP+96,BDSW96]. Esta
forma de abordar el problema, a pesar de ser muy productivapnde pro-
fundamente de cada tarea en cueston. Una manera nas abatta de tratar
este problema consiste en determinar un conjunto de reglasequn cuan-
ti cador de entrelazamiento debe seguir, sin preocuparseopsu signi cado
fsico [Vid0O, VPRK97]. Finalmente, podemos tamben utlizar conceptos
geonetricos para cuanti car el entrelazamiento. Podemosrganizar los esta-
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dos cuwanticos en conjuntos matenaticos y de nir distancas entre ellos. La
cantidad de entrelazamiento en un estado puede ser de nid& &sa manera
como la distancia entre ese estado y en conjunto de estadosemtrelazados
[VPRK97, VP98].

Actualmente el rumero de cuanti cadores de entrelazamig¢a es muy
grande, as que entender sus propiedades y la informacogue contienen
son los objetivos mas importantes de la teora del entrelzamiento. En
este sentido, encontrar relaciones entre cuanti cadoresogra darnos un
conocimiento mejor acerca de ®mo ordenar los estados otEos con relacon
al contenido de entrelazamiento.

Con el desarrollo de la teora del entrelazamiento ese tenempe a es-
tar conectado con otros campos de la fsica. El estudio dehteelazamiento
en modelos realistas nos permite obtener un conocimient@snadecuado de
varios feromenos fsicos en sistemas de materia condedaaoptica y fsica
abmica [RMHO1, LBMWO03, KWN+07, AFOVO07]. En ese sentido sehan
generado importantes cuestiones pacticas como >cwal e$ tipo de inter-
accbn capaz de producir entrelazamiento? >Cmo el enfezamiento cam-
bia en procesos diramicos ideales? 0 >®mo se comporta eegencia de
perdidas?.

Con relacon a esta ultima pregunta, es fundamental enteder como el
entrelazamiento cambia en situaciones reales donde siempicurren errores
en la preparacon de los estados 0 en su procesamiento. ‘@riestudios
conectando entrelazamiento y decoherencia han aparecigdd@sultimos afnos
[Dio03, DHO4, YEO4, YEO6, YEO7, SMDZ07, Ter07, AJO7], pero uchas
cuestiones fundamentales necesitan respuesta todavandJde ellas consiste
en entender el comportamiento de estados de muchas partesathie procesos
de decoherencia [SK02, CMB04, DB04, HDBO05]. Desde un punte dista
teorico ese problema podra darnos un entendimiento mejoacerca de la
transicon chsico-clantica. Desde un punto pactico, esa cueston es crucial
pues las ventajas de utilizar sistemas cuanticos para presar la informacon
son considerables sobre todo en el Imite del procesamientle sistemas de
muchas par culas.

Finalmente, la teora del entrelazamiento est casi todaconstruida para
partcula distinguibles. Es decir, en el caso en el que poaes identi car
(etiquetar) los subsistemas y de nir operaciones individales o locales con
precison. Cuando tratamos con partculas icenticas elconcepto de entre-
lazamiento se torna nmas sutil pues la de nicon de operacines locales se
torna vaga. Otro problema es que, en ese escenario, el eazamiento surge
gratuitamente. Por ejemplo, dos fermiones que esan en elismo sitio se
entrelazan (en un estado singlete) tlamente por el hech® deguir la es-
tadstica fermonica. As, no esh claro @mo describir ese tipo de correla-
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ciones cuanticas, o0 si son utiles para el procesamiento daformacon, o
incluso si deberamos llamarlas entrelazamiento.

E.1 Introduccon a la teora del entrelazamiento

E.1.1 De niciones

Los estados cuanticos son descritos por operadores po&it de traza uni-
taria actuando en un espacio vectoriaH llamado el espacio de estados. As
un operador 2 B(H) que representa un estado clantico satisface:

1. 0;
2. Tr( )=1:

Estos operadores son llamados operadores de densidad. Quial operador
de densidad puede ser escrito (de manera nounica) como ur@rbinacon
convexa de proyectores unidimensionales:

X . - -
= pijoiih i, (E.1)

donde X
pp=1 and p O (E.2)
|
Un caso especial de la representacon (E.1) es cuanglo= 1 para algun i, en
este caso podemos escribir el estado como un solo proyectadimensional,
i.e.:
=] iith ij: (E.3)
En ese caso, es llamado estado puro. Estados puros son los puntos extreamo
del conjunto de estados wanticos y representan aquellostemas acerca de
los cuales tenemos la maxima informacon posible.
Si un sistema clwantico esk compuesto por varias partes; B; ::;; N tamben
lo representamos por un operador de densidad, pero ahorawigo en un es-
pacio vectorialH dotado de una estructura tensorial:

H=Hax Hg I H n; (E.4)

dondeH; Hg;::;;Hy, representan los espacios de estados para cada parte.

La nocbon de entrelazamiento aparece en esos espacios coegos. En
seguida presentae la de nicon de entrelazamiento parasistemas de dos
partes para desples generalizar para sistemas de muchastgs.
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De nicon - Separabilidad de estados bipartidos: Estados bipar-
tidos entrelazados son aquellos que no pueden ser escritosi@ una com-
binacon convexa de productos de operadores de densidad.iclip de otra
forma, 2 B(Ha H ) es entrelazado siy ®lo si

X
6 pi T (E.5)

donde fp;g es una distribucon de probabilidades. Los estados que pilen
ser escritos como (E.5) son llamados estados separables.

Un ejemplo de un estado entrelazado ¢s.i = (jO0O + j11i)= 2.

En el caso de sistemas de dos partes tenemos solo que diféseestados
entrelazados de estados separables. Cuando hay muchas ggrun estado
puede tener entrelazamiento solamente entre algunas de fastes. Un ejem-
plo es el estado

+
g J14). (E.6)

(jOa + j11i)  (joo

p—

2
Este tipo de estados posee entrelazamiento entre las dosyeras partculas
y tamben entre las dosultimas, mientras que no hay entrelzamiento entre
esos dos bloques de partculas. En ese contexto surgen nrasedistintas

de entrelazar un sistema. Tenemos entonces que de nir kaseparabilidad
[DCT99, DCOO, ABLSO01]:

NI

De nition 3 - k-separabilidad: Un estado clantico es llamadd-separable
Si puede ser escrito como una combinacon convexa de estadpe son un
producto de mmo maximok factores.

E.1.2 Detectando el entrelazamiento

Dado un estado general, >omo podemos determinar si est entrelazado?
Inicialmente podramos intentar escribir como en (E.5). Pero, como
admite in nitas representaciones por combinaciones corxas, la tarea de
buscar, entre todas las representaciones, si alguna es egjente a (E.5) se
torna impracticable. Claramente tenemos que desarrollaretodos nas e -
caces para detectar el entrelazamiento. Siguiendo esa ideaios criterios
de entrelazamientos fueron propuestos en losultimos asipler02]. Desgraci-
adamente no hay una prueba de nitiva para comprobar la sepalilidad de
estados generales.

Entre los criterios de entrelazamiento mas utilizados est:

Desigualdades de Bell [Bel87, Ter00, WWO01b, Gis07].
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La decomposicon de Schmidt [Sch07, EK95, NCO00].
El criterio de Peres-Horodecki [Per96b, HHH96]
El criterio de Nielsen y Kempe [NKO1].

Testigos de entrelazamiento [HHH96, Ter00].

Mas criterios de entrelazamiento pueden ser encontrados §HHHHO7].

E.1.3 Cuanti cando el entrelazamiento

Como el entrelazamiento empe a ser tratado como un recarsse torro
fundamental cuanti car este recurso pagsa cada estado. Empa&mos con un
ejemplo. El estadg i =(jO0 + j11li)= 2 puede ser usado para teleportar
el estado de un qubit [BBC+93]. De esa manera decimos que. i tiene 1
ebit de entrelazamiento, y de nimos esa cantidad como la wad kasica de
entrelazamiento. Pero >qgLe pasa si usamos otro estado p#adeleportacon?

Muchos cuanti cadores de entrelazamiento fueron propuest en losultimos
anos. Adenas hay distintas formas de abordar el problemaeda cuanti -
cacon de entrelazamiento, siendo las nmas frecuentes lzaas en las siguientes
ideas:

Utilidad del estado: El estadoj i tiene mas entrelazamiento qug i,

si realiza de manera nmas adecuada alguna tarea. A pesar desgesta
forma de abordar el problema sea la mas aplicada, dependexdaticamente
de cada tarea elegida. As que a veces un estado es mejor para
tarea, pero peor para otras.

Converson entre estados:El estadoj i tiene mas entrelazamiento que
j 1 si podemos convertirj i enj i a trawes de operaciones locales y
comunicacbn chsica (LOCC 1). Esa de nicbn es natural pues no es
posible crear entrelazamiento por operaciones LOCC. El fnlema con
esa idea es que se conoce muy poco acerca de conversbn delest
mezcla [Jan02, LMDO08]. Adenas, en el caso de estados purakgunos
estados no son convertibles [JP99].

Enfoque geonetrico: La cantidad de entrelazamiento de un estado es
dada por la distancia (en el espacio de estados) entre el y sstado
separable nas cercano. Nuevamente esta de nicon depeadho solo de
los estados clanticos pero tamben de la medida de distaracutilizada.

1Del ingks local operations and classical communication
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Ejemplos de cuanti cadores de entrelazamiento pueden sancentrados
en [PV05, HHHHO7].

E.2 Contribuciones

En esa seccon comentae las ideas acerca del entrelazanid que pude
proponer junto con algunos colaboradores.

La medida Geonetrica y la Robusteza del Entrelazamiento

Como he dicho anteriormente hay muchos cuanti cadores de teglaza-
miento. Encontrar relaciones entre ellos puede ayudarnosckasi carlos y a
entender mejor la informacon que ellos contienen. Se ebtEeco relaciones
entre dos cuanti cadores frecuentemente utilizados, la Mieda Geonetrica
(Ecme ?)Y la Robustez Generalizada del EntrelazamientdR *). El primero
posee una interpretacon geonetrica clara: es la distam entre el estado y
su estado separable nas cercano. El ultimo fue inicialmenpropuesto como
una medida de la cantidad de ruido que un estado puede tolefaasta que
se vuelva separable.

Se puede ver qu®q es siempre mas grande quEgye . Un Imite inferior
para Ry mas preciso est basado en la pureza del estado cuanticosu pro-
ducto escalar maximo con un estado separable. Adenas, ehcaso de estados
puros, ese Imite puede ser expresado en erminos d&;ye . Finalmente es
posible identi car casos donde ese limite es estricto.

El entrelazamiento de superposiciones

Supongamos dos estados purog,i y j i. >Existe una relacon entre
el entrelazamiento de la superposicomj i + bj i y el entrelazamiento de
sus constituyente§ i yj i? Esta cueston fue recientemente estudiada por
Linden, Popescu y Smolin en el caso de sistemas de dos parkgdks pudieron
mostrar Imites superiores para el entrelazamiento de unsuperposicon en
erminos del entrelazamiento de sus componentes [LPS06].

M. Terra Cunha, A. Acn y yo consideramos una posible geneliaacon
del resultado de Linden, Popescu y Smolin para sistemas deahas partes.
Nosotros encontramos Imites para el entrelazamiento deigerposiciones de
estados de muchas partes basados lo en el entrelazanvede los estados
formadores. Se demosto que el Imite es estricto para urfamilia de estados

2Del ingks Geometric Measure of Entanglement.
3Del ingks Generalizad Robustness of Entanglement.
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compuestos por un rumero arbitrario de qubits. Adenmas nugtros resultados
tamben se extienden a un conjunto amplio de cuanti cadore de entrelaza-
miento, incluyendo lanegatividad la robustez del entrelazamientyg la medida
de la mejor aproximacon separable

Entrelazamiento PPT y violacon de desigualdades de Bell p ara
variables continuas

Inspirado por las similitudes entre los procesos de destim del entre-
lazamiento [BDSW96] y la deteccon de la no-localidad esadida [Pop95,
Per96a], A. Peres conjetun que todos los estados no distilles admiten una
descripcon a trawes de modelos realistas locales. O sess0s estados no vi-
olan desigualdades de Bell. Esa conjetura fue demostradaeaps en el caso
donde dos medidas individuales birarias son aplicadas a wistema de N
partes.

Recientemente una nueva desigualdad de Bell para variablesntinuas
utilizando operadores no-acotados fue propuesta [CFRDO7Jtilizando esa
desigualdad A. Salles, A. Acn y yo pudimos extender la coejura de Peres
para el caso contiruo y probar que todos los estados con unamsposicon
parcial positiva satisfacen la desigualdad.

Clari cando la geometra del entrelazamiento

El conjunto de los estados cuanticos es cerrado y convexangbinaciones
convexas de estados cuwanticos son estados cuanticos. Bhgunto de los esta-
dos separables es un subconjunto, que tamben es cerradayeexo. Adenas
de esas caractersticas que son consecuencias directasadge nicon de es-
tados cuanticos y estados separables, otras preguntas gen de ese aralisis.
>@mo es la forma de esos conjuntos? >Cual es su volumen?mQ@ carac-
terizar esas cantidades? >Estin estas cantidades directente relacionadas
con feromenos fsicos?

En una colaboracon con M. Terra Cunha, M. F. Santos, F. Bradao,
P. Lima, O. Cosme, S. Radua, y C. Monken, propusimos un neio para
investigar la forma del conjunto de estados separables. Bagllo utilizamos
un cuanti cador de entrelazamiento llamadaobustez aleatoria del entrelaza-
miento. Ese cuanti cador puede ser usado como un microscopio panesti-
gar la frontera del conjunto de estados separables. Adena®mo esta inves-
tigacon puede ser hecha a un nivel experimental, llevam@scabo un exper-
imento con fotones entrelazados para ilustrar nuestras lieciones teoricas.
Singularidades en el conjunto de estados separables para dabits fueron
encontradas. Esas singularidades aparecen naturalmenteferomenos como
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la transferencia de entrelazamiento en sistemas de spinegets a campos
magreticos variables y en procesos de decoherencia.

Entrelazamiento de muchas partculas y decoherencia

En el mundo real no es posible generar un estado cuantico purDebido
a errores en la preparacon de los estados y ruido en su dimica siempre
tratamos con estados mezcla. El entrelazamiento es muy sbies a esos
procesos ruidosos y esa es seguramente la principal di adtpara la imple-
mentacon real de protocolos de informacon clantica. Alemas el feromeno
de decoherencia esht en la esencia de la transicon entrersundo cuantico
y el chsico [Zur03]. En este sentido, entender como los adbs clanticos se
comportan en presencia de ruido es importante no solamentesde un punto
de vista practico sino tamben fundamental.

Junto con L. Aolita, R. Chaves, L. Davidovich y A. Acn, estudiamos
el decaimiento del entrelazamiento de una familia importé® de estados
cuanticos, los estados GHZ compuestos por un numero arkanio de qubits.
Varias fuentes de decoherencia interactuando independiemente con cada
partcula fueron consideradas y leyes de escala para el deuiento del entre-
lazamiento y para su tiempo de desaparicon fueron obterdd. Ese tiempo
crece con el tamano del sistema. Sin embargo el entrelazamto se vuelve ar-
bitrariamente pequero mucho antes de desaparecer, en lentpo que escala
inversamente con el rumero de subsistemas. Adenas, nosmt mostramos
que el decaimiento de estados GHZ puede llevar a estados deetazamiento
con nado 4.

Entrelazamiento de partculas ignticas

Supongamos un gas de fermiones que no interactian a tempieira cero.
>Si tomamos dos de eses fermiones, estos esan entrelagaddunto con M.
Frarca, M. Terra Cunha, C. Lunkes y V. Vedral, hemos demosado que la
respuesta a esa pregunta depende no lo de la posicon d&ae partculas,
pero tamben de la manera (el detector) con que las escogesnoPrimero
consideramos un medidor ideal para las partculas y de niws operadores de
medida que detectan la simetra de la parte espacial y la p&r de espn del
estado como una funcon de la distancia entre las partcals. Movendonos
a un escenario nas realista consideramos aparatos que nmda posicon de
las partculas con una cierta imprecison. Inesperadam#e obtenemos que el
entrelazamiento de los fermiones pode crecer con la impseci de la medida.

4Del ingks bound entanglement
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En ese mismo contexto, tamben consideramos el problema déilizar
ese entrelazamiento de partculas icenticas. En ese prédma L. Malard y
F. Matinaga se han unido a nuestro trabajo y con ellos hemosgpuesto un
esquema que permite la extraccon de entrelazamiento desgozos clanticos
semiconductores. Dos fotones independientes excitan déecgones que no
interactian en el semiconductor. Cuando los electrones sgajan movendose
hacia el fondo de la banda de conduccon, el Princpio de Réi fuerza correla-
ciones entre ellos. Desples de que esos electrones decasmHa banda de
valencia, esa correlacon es transferida a los fotones,epueden ser entonces
utilizados para el procesamiento de informacon. Conclomos entonces que
<el entrelazamiento de partculas icenticas puede setili.
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