
Gaussian operations and privacy

Miguel Navascués and Antonio Acín
ICFO-Institut de Ciències Fotòniques, Jordi Girona 29, Edifici Nexus II, E-08034 Barcelona, Spain

�Received 21 March 2005; published 5 July 2005�

We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and
Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the
protocol proposed in �Navascués et al. Phys. Rev. Lett. 94, 010502 �2005��. Then, we prove that a generalized
version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states.
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I. INTRODUCTION

The study of those tasks that can be achieved by process-
ing information encoded on quantum states is the main scope
of quantum information theory �QIT�. The basic unit for
quantum information is the so-called quantum bit, or qubit—
namely, a two-dimensional quantum system. Moreover,
quantum correlations, or entanglement, constitute a key re-
source in QIT, their unit being the entangled bit or ebit. In
general, any �quantum� information task can be seen as an
interconversion of resources. For instance, quantum telepor-
tation �1� can be summarized as the process transforming
1 ebit+2 bits→1 qubit, while dense coding �2� corresponds
to the transformation 1 ebit+1 qubit→2 bits. Moving to
cryptography, secret bits are a fundamental resource. These
are perfectly correlated and random bits shared by two hon-
est parties, Alice and Bob, about which a third dishonest
party, Eve, has no information. Any quantum key distribution
protocol can be seen as the process of distributing secret bits
through an insecure channel by means of quantum states.
Therefore, relevant questions in this context are to identify
those quantum states containing secret correlations and show
how to distill these correlations into a perfect secret key.
Indeed, it has recently been shown that a quantum state con-
tains secret correlations if and only if it is entangled �3�.

In these last years, quantum information theory for con-
tinuous variable systems has proved to be a very fruitful
area, as it allows theory to connect easily with experiments
�for a review, see �4��. In this case, the information encoding
is done on continuous quantum variables, such as the quadra-
tures of the electromagnetic field. Recent works have been
developed in the aim of reproducing well-known quantum
information protocols for finite-dimensional systems in this
new setup. Examples of these are quantum cryptography �5�
or quantum teleportation �6�. Interestingly, most of these pro-
tocols work using only Gaussian operations—i.e., operations
that transform Gaussian states into Gaussian states. This is
important because Gaussian operations are easy to imple-
ment experimentally with a high accuracy level. A beam
splitter and a squeezer are examples of Gaussian operations,
while photon counting constitutes a non-Gaussian operation.
Up to now, non-Gaussian operations are challenging from an
experimental point of view �see, however, �7��.

A significant effort has been devoted to study the possi-
bilities and limitations Gaussian operations provide to quan-
tum Information protocols. We know, for example, that en-

tanglement distillation of Gaussian states with Gaussian
operations is impossible �8–10�. More precisely: although
there exist entangled Gaussian states that are distillable to
singlets, the distillation process requires a non-Gaussian op-
eration. Or, in other words, the process of converting Gauss-
ian quantum states into perfect ebits by means of Gaussian
local operations and classical communication �GLOCC� is
impossible. However, ebits are not the only information re-
source two collaborating parties may want to establish
through quantum states. Actually, distillation of perfect se-
cret bits by GLOCC is known to be possible from some
Gaussian states �5�. Thus, the set of Gaussian states and op-
erations can sometimes be sufficient for cryptographic appli-
cations. At first sight, this result may seem surprising taking
into account that Gaussian states have a positive Wigner
function; i.e., there is a local variable model that reproduces
the correlations given by Gaussian measurements.

In this article, we analyze the process of extracting secret
bits from several copies of a given Gaussian state when the
honest parties are allowed to perform local Gaussian opera-
tions and communicate classically. In the derivation of all the
results, it is assumed that Alice and Bob share N independent
copies of a known Gaussian state. That is, we do not con-
sider the important problem of the distribution and estima-
tion of these states. They simply constitute an initially given
resource that the honest parties will to convert into secret
bits. We start reviewing the results of �11�, where it was
shown that, provided Eve is restricted to individual attacks, a
secret key can be extracted from any entanglement distillable
state. We extend the security analysis of this protocol for the
case of collective attacks, giving a necessary and sufficient
condition for secret key distillation. We also show that there
is no way in which the honest parties can attain privacy with
our protocol if the initial state is bound entangled. This is
true even if Eve is assumed to measure her state before any
reconciliation process has taken place. This suggests that
Gaussian operations may be useless to extract a secret key
out of bound entangled Gaussian states, in opposition to the
astounding results in �12� for finite-dimensional systems.

The article is organized as follows: Section II is a brief
introduction to the Gaussian states and Gaussian operations
formalism. The reader familiar with both topics can skip this
part. In Sec. III, we analyze the limits of the protocol intro-
duced in �11�. In particular, we show that it allows one to
prove the security of sufficiently entangled states, while it
fails for any bound entangled state. Section IV is devoted to
our conclusions.
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II. GAUSSIAN STATES AND OPERATIONS

In this article we consider quantum systems of n canoni-
cal degrees of freedom, called modes, belonging to
B(H�Rn�). These are characterized by operators
�X1 , P1 ,… ,Xn , Pn�= �R1 ,… ,R2n� satisfying the commutation
relations �Rj ,Rj�= i��n� jk, where

�n = � i=1
n � 0 1

− 1 0
� �1�

is called the symplectic matrix. In this context, it can be
proved that any operator A transforming n-mode states to
n-mode states can be expressed as

A = �2��−n� �A���W−�d
2n� , �2�

where �A��� is the so-called characteristic function and W�

are the Weyl operators, defined as

W� = ei�T�R, �3�

and R= �R1 ,… ,R2n�. Weyl operators satisfy the well-known
Weyl relations

W�W� = e−i�T��W�+�. �4�

When A corresponds to the density operator associated with
a certain state, �A��� is called the characteristic function of
the state A. One can also define the Wigner function WA���
of A as

WA��� = �2��−2n� ei�T���A���d2n� . �5�

The Wigner function behaves as a quasiprobability distribu-
tion in phase space. It is normalized, and integrating over Xi
or Pi for each mode gives the corresponding probability dis-
tribution of the remaining canonical variables.

For every state �, one can define its displacement vector d
as dk= tr��Rk	 and its covariance matrix � as �kl= tr���Rk

−dk ,Rl−dl	+	, where �	+ denotes the anticommutator. Be-
cause of the Heisenberg uncertainty relations, any state has
to satisfy

� � i� . �6�

Gaussian states are those n-mode quantum states whose
characteristic function is of the form

���� = ei��d−��T���/4. �7�

Thus, any Gaussian state is completely described by its dis-
placement vector d and covariance matrix �.

Gaussian operations are completely positive maps trans-
forming Gaussian states into Gaussian states. Gaussian op-
erations were fully characterized in �8,10�. There, the authors
show that a Gaussian state G with covariance matrix 	 and
displacement 
 can be associated to each Gaussian operation
G. In particular, if 	 and 
 are given by

	 = � 	1 	12

	12
T 	2

� 
 = �
1


2
� , �8�

then the application of G on a Gaussian state �� ,d� produces
a Gaussian state ��� ,d�� such that

�� = 	̃1 − 	̃12
1

	̃2 + �
	̃12

T ,

d� = 
1 + 	̃12
1

	̃2 + �
�
2 + d� , �9�

where 	̃= �1 � ��	�1 � �� and �=D�1,−1,1 ,−1 ,…� is the
transformation that changes the sign of the momenta.
Throughout this article, D�a ,b ,…� will denote a diagonal
matrix with nonzero entries a ,b and so on.

A fundamental Gaussian operation is homodyne
detection—that is, the physical measurement of one of the
canonical coordinates. Let � define a Gaussian state with
zero displacement vector. Suppose � can be divided into
modes as

� = � A C

CT B
� . �10�

If we measure the X component of each of the modes corre-
sponding to A, obtaining the result �X1 ,X2 ,…�, system B
will turn into a Gaussian state with covariance matrix �CM�
�9�

B� = B − CT�XAX�MPC �11�

and displacement vector

dB = CT�XAX�MPdA, �12�

where dA= �X1 ,0 ,X2 ,0 ,…�, MP denotes the pseudoinverse
�inverse on the range�, and X is the projector X
=D�1,0 ,1 ,0 ,1 ,0 ,…�.

Another important subset of Gaussian operations is con-
stituted by the so-called symplectic transformations. It can be
proved that unitary Gaussian operations are the ones that
transform the canonical coordinates in the following way:

R� = SR + T , �13�

where T is a vector and S is a matrix belonging to the sym-
plectic group Sp�2n ,R�. The symplectic group is given by
those matrices leaving invariant the symplectic matrix—i.e.,
satisfying S�ST=�. When T=0, the transformation is called
symplectic. Under symplectic transformations, the displace-
ment vector and the covariance matrix change into d�=Sd
and ��=S�ST. Symplectic transformations are very relevant
because of the following.

Theorem (Williamson) �13�. For any real and positive
definite 2n�2n matrix, C, one can find a symplectic matrix
S such that

SCST = � i=1
n 
i12, �14�

where 
i�0 are called the symplectic eigenvalues of C.
Because of Eq. �6�, if we apply this theorem to the cova-

riance matrix of a certain state, we will get that all its sym-
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plectic eigenvalues 
i have to be greater or equal than 1.
Moreover, for a Gaussian state with covariance matrix �, the
identity tr��2�=det���−1/2 holds �recall that tr��2� gives a
measure of the purity of ��. So a Gaussian state is pure if and
only if all its symplectic eigenvalues are equal to one.

Finally, let us give some known results about entangle-
ment and Gaussian states that will next be used. In this case,
one considers Gaussian states in bipartite systems of n+m
modes, where Alice and Bob’s systems are of n and m
modes, respectively.

Theorem �14�. Let �AB be the covariance matrix of a
Gaussian state in a bipartite system. This state is separable if
and only if

�AB � �a � �b �15�

for certain physical covariance matrices �a and �b in systems
A and B, respectively.

Partial transposition is a positive, but not completely posi-
tive, map that plays a key role in entanglement theory. In the
case of continuous variable systems, after partial transposi-
tion on, say, system B, the sign of Bob’s momenta is changed
while the rest of canonical coordinates is kept unchanged. At
the level of covariance matrices, this means that �AB→�AB�
=�B�AB�B. Therefore, a state � has nonpositive partial trans-
position �NPPT� when �AB� does not define a positive
operator—that is,

�AB � i�̃ , �16�

where �̃= �1A � �B���1A � �B�. It can be shown that this con-
dition is equivalent to

�AB � �̃�AB
−1 �̃T. �17�

The positivity of partial transposition, also known as the PPT
criterion, represents a necessary and sufficient condition for
separability for 1�1 �15� and 1�N Gaussian states �14�,
while it is only a necessary condition for the rest of systems
�14�. It also gives a necessary and sufficient condition for
entanglement distillability: a Gaussian state is distillable if
and only if it is NPPT �16�.

III. SECRET BITS FROM GAUSSIAN STATES

In our quantum cryptographic scenario, there are two par-
ties, Alice and Bob, who share several copies of a certain
Gaussian state �AB. As said, it is assumed that the honest
parties know to have N independent copies of �AB. There is
also an eavesdropper, Eve, who keeps the purification of that
state. In a prepare and measure scheme, the assumption in
the state preparation means that Eve interacts identically, in-
dividually and in a Gaussian way, with the states sent to Bob
by Alice. Alice and Bob perform some individual measure-
ments over their copies and afterwards apply advantage dis-
tillation, error correction, and privacy amplification tech-
niques to extract a perfect secret key. These three processes
constitute the reconciliation part of the protocol. We consider
two types of attacks: �i� individual, where Eve performs in-
dividual measurements, possibly non-Gaussian, over her set
of states before Alice and Bob’s public reconciliation, or �ii�

collective, where Eve waits until the reconciliation is finished
and then decides what �possibly collective� measurement
gives her more information on the final key. Note that this
second type of attacks is the most general under the men-
tioned assumption in the state preparation. On the other
hand, to assume that Eve measures her state before the rec-
onciliation process, as for individual attacks, appears quite
reasonable from an experimental point of view.

In this section, we first review the protocol described in
�11�. There, it was proved that �i� a secret key can be distilled
from any NPPT Gaussian state, provided that Eve is re-
stricted to individual attacks, �ii� there exist slightly en-
tangled states that become insecure, with our protocol, when
Eve’s attack is collective and �iii� key distillation secure
against collective attacks is still possible for sufficiently en-
tangled states. Here, we will first improve the security analy-
sis against collective attacks, giving a necessary and suffi-
cient condition for secret key distillation from Gaussian
states with our protocol. Later, we will show that our scheme
does not allow to extract a secret key out of bound entangled
Gaussian states.

A. Key distillation protocol

The key distillation protocol presented in �11� consists of
the following steps

�i� Starting from �AB, Alice and Bob apply the GLOCC
protocol of �16� mapping any NPPT Gaussian state of n+m
modes into an NPPT 1�1 Gaussian and symmetric state,
whose CM �see Eq. �10�� is

A = B = �
 0

0 

� C = �cx 0

0 − cp
� , �18�

where 
�0 and cx�cp�0. The positivity condition reads

2−cxcp−1�
�cx−cp� while the entanglement �NPPT� con-
dition gives


2 + cxcp − 1 � 
�cx + cp� . �19�

�ii� Each of them measure the X quadratures of their
modes, XA ,XB. As soon as all measurements are done, Alice
randomly chooses a real number X0�0 and sends it to Bob
via a classical channel. If their measured quadratures satisfy

XA
= 
XB
=X0, they accept the results. Otherwise, they dis-
card them. They then make binary these results according to
the prescription Xi=X0→0, Xi=−X0→1, i=A ,B, thus ob-
taining a list of correlated bits.

�iii� Alice and Bob apply classical advantage distillation
�17� over their lists of symbols: they randomly choose a set
of N indices and build binary N-vectors with the correspond-
ing symbols appearing in their lists: �A1 ,A2 ,… ,AN� for Alice
and �B1 ,… ,BN� for Bob. Then, Alice generates a random bit,
c� �0,1	, and sends Bob a vector �c1 ,… ,cN� such that A1

� c1=A2 � c2= ¯ =AN � cN=c. Next, Bob computes the
quantities ci�=Bi � ci, i=1,… ,N. In case c1�=c2�= ¯ =cN�
=c�, Bob accepts the symbol c�. Otherwise, he discards it.
Anyhow, after this step Alice and Bob will have to throw
away all the symbols used and repeat the process with the
remaining symbols. At the end, they will have a reduced list
of more correlated symbols.
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�iv� Alice and Bob apply error correction and privacy
amplification protocols to the new list in order to obtain a
secret key.

Let us denote by �AB Alice and Bob’s 1�1 state after
step �i� and by �B the probability that Alice and Bob obtain
different results �namely, �X0 ,−X0� or �−X0 ,X0�� after the
homodyne measurements and post-selection. Let us also de-
note by 
e±±� Eve’s resulting states when Alice and Bob mea-
sure �±X0 , ±X0�. If Eve is restricted to individual attacks—
i.e., she measures before step �iii�—the honest parties can
distill a key when �18�

�B

1 − �B
� 
�e++
e−−�
 . �20�

Actually, this security condition also holds for the case in
which Eve applies a measurement on a finite number of cop-
ies of her states before the reconciliation process has started.
As shown in �11�, Eq. �20� is equivalent to demand that the
initial state �AB was NPPT.

Now, one would naturally wonder how this security con-
dition has to be modified when Eve is allowed to perform a
collective attack; i.e., she can measure after the public rec-
onciliation. In this case, Eve’s information during the whole
protocol is quantum. Note that, once the honest parties ac-
cept a symbol after advantage distillation, they can agree to
both change its sign or not. This is so because the symplectic
transformation �XA , PA ,XB , PB�→ �−XA ,−PA ,−XB ,−PB�
leaves the Gaussian state �AB invariant. Therefore, we can
consider that Alice’s N symbols employed in a successful
performance of step �iii�, are equal and so Bob’s. That is, the
global state resulting from step �iii� is �see also �19��

�ABE =
1 − �BN

2
��00� � �e++��N + �11� � �e−−��N�

+
�BN

2
��01� � �e+−��N + �10� � �e−+��N� , �21�

where ��� denotes the projector onto 
�� and �BN is Bob’s
error probability after advantage distillation. For large N, this
error has the form �18�

�BN � � �B

1 − �B
�N

. �22�

In step �iv�, Alice and Bob apply the one-way key distil-
lation protocol given in �20�. This protocol deals with the
case where Alice has a classical random variable A correlated
to a quantum state on Bob and Eve’s hands, �B
A and �E
A.
The achievable key rate satisfies �20�

K→ � ��A:B� − ��A:E� , �23�

where ��X :Y� denotes the Holevo bound �21�—i.e.,
��X :Y�=S��Y�−
Xp�X�S��Y
X� and �Y =
Xp�X��Y
X. In our
case, Alice and Bob have classical variables, so ��A :B� is
actually equal to the mutual information I�A :B�, which is a
function of �BN. Let us compute in what follows ��A :E�.

Notice that in the limit of large N, the error terms in Eq.
�21� can be neglected, since �BN→0. This means that the
states �E
A are actually pure, so ��A :E��S��E� for large N. If

the covariance matrix associated to the state �AB is given by

�AB = ��x R

RT S
� , �24�

where �x, R, T, and S are 2�2 matrices, one can see that for
large N, S��E��kE

N, where

log kE = − �X0,X0��S − RT�x
−1R − �x

−1��X0

X0
� . �25�

Actually, one has that S−RT�x
−1R−�x

−1= ����AB
−1 �T�x	−1−�x

−1.
Throughout this article, �M�x denotes the projection of a ge-
neric operator M onto the x space. It follows from this ex-
pression that kE= 
�e++
e−−�
2. Comparing now the two quan-
tities, it is clear that a positive key rate is possible when

�B

1 − �B
� 
�e++
e−−�
2. �26�

This gives a sufficient condition for distilling a secret key.
On the other hand, if Eve applies the particular attack pro-
posed in �22�, our protocol turns out to be insecure if Eq.
�26� does not hold �11�. That is, Eq. �26� is indeed the nec-
essary and sufficient condition for positive key extraction
using our GLOCC protocol from Gaussian states. Therefore,
this closes the security gap left open in the analysis of �11�
�see also Fig. 1�.

This result could somehow be expected: the application of
the projectors �±X0� transforms the original Gaussian state
into an effective two-qubit state that tends to a Bell diagonal
state in the limit N going to infinite. The necessary and suf-
ficient for positive key extraction from a two-qubit state has
recently been derived in �19�. The bound given there looks
identical to Eq. �26�.

FIG. 1. Security analysis of isometric 1�1 Gaussian states,
with covariance matrix satisfying �see Eq. �18�� cx=cp=c. All
physical states are above the solid line. The dashed line defines the
entanglement limit, which coincides with the security bound against
incoherent attacks. States below the dash-dotted line are secure
against any attack. It is implicitly assumed that Alice and Bob mea-
sure the X quadratures.
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B. Bound entangled states

Our next result concerns the distillation of secret bits from
PPT Gaussian states using the previous GLOCC protocol.
Recall that in the Gaussian scenario, a state is entanglement
distillable if and only if it is NPPT. This means that there do
not exist NPPT bound entangled states. It is quite clear that
the considered protocol, in the form previously presented,
does not allow to extract a secret key from any PPT state.
Indeed, in step �i� any PPT state is mapped into a 1�1 PPT
state, which is separable �15�, and no secret key can be ex-
tracted from separable states �23�. This is why we consider a
generalized version of the protocol above, where step �i� is
replaced by �i’�. Alice and Bob perform any GLOCC pre
processing, possibly non deterministic, over their states.
Then, they measure the X quadrature of one of their modes
as in step �ii� and the protocol proceeds as explained above.
It is next shown that even in this more general scenario and
restricting Eve to an individual attack, no secret key distilla-
tion is possible from PPT states.

As above, �B defines Bob’s error probability after homo-
dyne measurement and postselection. Let �+ and �− be Eve’s
resulting states when Alice and Bob measure �X0 ,X0� or
�−X0 ,−X0�, respectively. Contrary to the previous situation,
these states can now be mixed. Then, if Eve is restricted to
individual attacks, a secret key can be distilled using our
scheme if and only if

�B

1 − �B

� tr����−�+
��−� . �27�

It is possible to derive this formula from �18�. There, it is
shown that Eve’s error probability behaves as �EN

� �
i=1
M �tr��+Mi�tr��−Mi��N, where Mi is the ith operator cor-

responding to the ith outcome of Eve’s measurement, 
iMi
=1. Now, one has to take into account that the minimum of

i�tr��+Mi�tr��−Mi� over all possible measurements is equal
to the Uhlmann’s fidelity �24� of �+ and �−—namely,

tr����−�+
��−�. A derivation of this result can be found in

�25�. Recall that Bob’s error probability after step �iii� goes
as Eg. �22�. Thus, for Alice and Bob to extract a secret key it
is enough that �BN decreases exponentially faster than �EN.
Then, condition �27� immediately applies.

Our goal is now to express �27� in terms of �AB. In fact, it
will be seen that �27� is equivalent to the NPPT condition for
Gaussian states.

As usual, it is supposed that Eve’s state is entangled with
Alice and Bob’s one, so that the whole state is pure. Let us
assume that Alice and Bob have just finished the GLOCC pre
processing of step �i�, and let us call �AB

�r� the resulting re-
duced covariance matrix that contains only their first modes.
We introduce the following notation:

�ABE = ��AB
�r� L E

LT �AB
�m� G

ET GT �E
�, F = �E

G
�

�AB
�r� = ��x R

RT S
�, ��AB

�r� �−1 = � X Y

YT Z
� , �28�

where �x and X correspond to the XA ,XB space. The follow-
ing formula will next be useful �26�:

� A C

CT B
�−1

=� �A − C
1

B
CT�−1

A−1C�CT 1

A
C − B�−1

�CT 1

A
C − B�−1

CTA−1 �B − CT 1

A
C�−1 � . �29�

Using Eqs. �11� and �12� it is straightforward to check that �+

is described by

�E� = �E − ET�E ,

dE� = ET��
X0

X0

0

0
� , �30�

where

� = ��x
−1 0

0 0
� . �31�

Similarly, if Alice and Bob measure −X0, Eve’s correspond-
ing state �− will have the same covariance matrix and oppo-
site displacement vector.

Let us first calculate the right-hand side of �27�. It can be
shown �see the Appendix� that

tr����−�+
��−� = e−dE�

T
�E�

−1
dE� . �32�

Now we want to write this in terms of �AB. If we define
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E = �Ex

Ep
� , �33�

where Ex is the part of E corresponding to the X quadratures,
we only have to substitute to get that dE�

T�E�
−1dE� can be writ-

ten as

�X0 X0 ��x
−1Ex��E − Ex

T�x
−1Ex�−1Ex

T�x
−1�X0

X0
� . �34�

Using formula �29� applied to the matrix

K = ��x Ex

Ex
T �E

�−1

�35�

�29� and the condition KK−1=1, we have that Ex��E

−Ex�x
−1Ex�−1Ex

T�x
−1=�x��x−Ex�E

−1Ex
T�−1−1. Substituting, we

arrive at

dE�
T�E�

−1dE� = �X0 X0 ����x − Ex�E
−1Ex

T�−1 − �x
−1��X0

X0
� . �36�

Note that ��x−Ex�E
−1Ex

T� is just the projection of ��AB

−F�E
−1FT� onto the x space. Therefore, one can replace in the

previous expression ��x−Ex�E
−1Ex

T� and �x
−1 by ��AB

−F�E
−1FT�x and ��AB

−1 �x.
On the other hand, we have assumed that Eve purifies the

state shared by Alice and Bob. Since all purifications are
equivalent up to a unitary transformation on Eve’s space, one
can consider a particular purification without losing general-
ity. One possible purification �see �28�� is given by �27�

F = �AB�− ��AB�AB�2 − 1�1/2� �E = ��AB� . �37�

If S is the symplectic matrix such that ST�ABS is diagonal,
one can verify that

F�E
−1FT = − �ABS��k

�
k
2 − 112�S−1S��k

1


k
12�

�ST�S−1�T��k
�
k

2 − 112�ST�AB

= − �ABS��k


k
2 − 1


k
12�ST�AB

= �AB − �AB�AB
−1 �AB

T . �38�

So �AB−F�EFT=��AB
−1 �T and tr����−�+

��−� is equal to

exp�− X0
2�1 1 ����AB�AB

−1 �AB
T �x

−1 − ��AB�x
−1��1

1
�� . �39�

The next step is to calculate the left-hand side of �27�.
Let ��XA ,XB� be the probability density of �XA ,XB�, the X

quadratures of the reduced state ��r�. The corresponding
Wigner function satisfies

w��� � e−�T��AB
�r� �−1�. �40�

If �= �x1
A ,x1

B , p��, then, according to Eqs. �28�,

��x1
A,x1

B� �� e−��T��AB
�r� �−1��dp� =� e−�x�TXx�+2x�TYp�+p�TZp��dp� . �41�

Finally, we get

��x1
A,x1

B� � e−x�T�X−YZ−1YT�x� . �42�

But, looking at Eq. �29�, we see that this is just
exp�−x�T�x

−1x��. Writing

�x = �a b

b c
� , �43�

it is easy to see that, in our protocol,

�B

1 − �B
= exp�−

4bX0
2

ac − b2� . �44�

In a similar way, one can define

���AB
−1 �T�x = �d e

e f
� , �45�

and then, the term in the exponent of Eq. �39� can be ex-
pressed as

− X0
2�d − 2e + f

de − f2 −
a − 2b + c

ac − b2 � . �46�

Collecting all these results, the condition �27� for distill-
ing a key with this protocol is equivalent to

d + f − 2e

df − e2 −
a + c + 2b

ac − b2 � 0. �47�

We are now in a position to prove the next
Theorem. A secret key secure against individual attacks

can be distilled with our GLOCC protocol from a Gaussian
state if and only if the state is NPPT.

Proof. The idea of the proof is to show that condition �27�
is equivalent to the PPT criterion. First, note that Eq. �47�
can be rewritten as

�1 − 1 ����̃�AB
−1 �̃T�x

−1 − �x
−1�� 1

− 1
� � 0. �48�

Since ��̃�AB
−1 �̃T�x and �x are positive operators, the previous

equation implies that �AB− �̃�AB
−1 �̃T�0. But this is the con-

dition for a Gaussian state to be NPPT, as stated in �17�.
Therefore, if a key can be distilled out of a Gaussian state
with the previous protocol, this state has to be NPPT. For the
opposite implication one simply has to apply the protocol of
�11�, which has previously been described.

IV. CONCLUSIONS

In this article, we have analyzed the extraction of secret
bits from quantum states in the every-day-growing field of
quantum information theory with continuous variables. We
have first reviewed the protocol and results of �11�: a secret
key can be distilled from any NPPT state when Eve is re-
stricted to individual attacks. In the more general scenario of
collective attacks, we extend the analysis of �11�, providing a
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necessary and sufficient condition for key distillability, with
the considered protocol. This protocol turns out to be com-
pletely useless for bound entangled states, even in the case of
individual attacks. Before concluding, we would like to dis-
cuss several open questions and implications that follow
from our results.

First, note that all the presented results aim at answering
whether secret bits can be extracted from Gaussian states by
GLOCC. In terms of resources, we study the conversion of
Gaussian states into secret bits. However, very little is said
about the rate governing this conversion. This problem ap-
pears as a natural follow-up of the present work. Notice that,
strictly speaking, the considered key-distillation protocol has
zero rate. Indeed, the probability that Alice and Bob obtain
the outcomes ±X0 is zero. Of course, the analysis can easily
be adapted to a protocol with finite rate: Alice and Bob only
have to accept outcomes in the range 
X0±�
, where ��0.
By choosing a properly small �, the security conditions still
hold because of continuity, while the protocol automatically
acquires a finite rate. It is intriguing the fact that both secu-
rity conditions, Eqs. �20� and �26�, are independent of X0.
This suggests that key distillation should still be possible
when Alice and Bob directly assign a bit to the sign of their
measurements, without discarding any value. This would
represent a significant improvement of the final key rate.
Unfortunately, this result remains unproven. It would also be
desirable to adapt the reconciliation process to the continu-
ous character of the measured quantity, in a similar way as
the sliced-reconciliation protocols for error correction intro-
duced in �28�.

Another related question is the distribution of quantum
states. All our results were based on the hypothesis that Alice
and Bob share N independent realization of the same known
Gaussian state. However, in any practical cryptographic pro-
tocol, Alice and Bob will send and measure quantum states
through an insecure channel. From the observed probabili-
ties, they have to infer what their correlations with the envi-
ronment are. This is indeed a very delicate process that has
not been considered here. For instance, the honest parties
cannot in principle exclude the existence of correlations be-
tween the different quantum systems they measure. While in
our case, we simply assume that N copies of the same Gauss-
ian state were given as an initial resource.

At a more fundamental level, our analysis represents one
of the first steps in the identification of the set of Gaussian
states that can be converted into secret bits by GLOCC. As
discussed in �11�, for any Gaussian state one can define GKD
and GED, quantities that specify the amount of secret and
entangled bits extractable from it by GLOCC protocols. The
results of Refs. �8–10� imply that GED=0. On the other
hand, it follows from �11� and this work that GKD is non zero
for sufficiently entangled NPPT states. It would be relevant
to extend the present results, proving that GKD�0 for some
states violating our security conditions. An almost unex-
plored possibility in this direction is the use of global, but
still Gaussian, operations by Alice and Bob. In particular,
note that in the analyzed protocol, all the quantum operations
were at the single-copy level. Therefore, it is unknown
whether the use of coherent quantum operations gives any
improvement for key extraction. A related open question is

the existence of the so-called “entanglement purification”
protocols �8�, where Alice and Bob map many copies of a
noisy entangled state into a pure entangled state �not neces-
sarily maximally entangled�. The goal would then be to de-
couple the honest parties’ correlation from the eavesdropper,
something that it is sufficient in a cryptographic scenario.

The case of bound entangled states is also of particular
interest. Indeed, our result suggest that GKD=0 for all these
states �cf. �12��. In the same spirit as in Ref. �12�, one could
look for Gaussian secret states. These would be states for
which there exist Gaussian measurements by Alice and Bob
almost perfectly correlated about which Eve has an arbi-
trarily small amount of information. The results of Sec. III B
rule out this possibility for PPT states. Indeed, if this were
the case, there would be PPT secret states. This would imply
that our protocol would work for a PPT state, which has been
shown here to be impossible. Unfortunately, this does not
allow to conclude that GKD=0 for PPT states. More in gen-
eral, it would also be interesting to prove that KD�0 for a
Gaussian PPT state—i.e., that key extraction is possible—
even if the distillation protocol employs a non-Gaussian op-
eration.
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APPENDIX: PROOF OF RELATION (32)

From the definition of the characteristic function and re-
lation �3� it can be derived that

�1
2 → �1

�2���� = e−i�T�dE�−�T�D��E���T�/4S��E�� . �A1�

Therefore,

��1 → �1
�1/2���� = e−i�T�dE�−�T�V��E���T�/4H��E�� , �A2�

and then

��1�0
��1 → A��E� ,dE��e−�TB��E���+i�T�r��E� ,d�. �A3�

Using the cyclic property of the trace, we get tr���1�0
��1�

=tr��1�0�=e−2dE�
T
�E�

−1dE� 
�E� 
−1/2=A��E� ,dE��. One then has

���1�0
��1 → C��E���A��E� ,dE��e−�

T
U��E���+i�

T
�s��E� ,dE��,

�A4�

which, after substitution, gives

tr����1�0
��1� = e−dE��

T
�E�

−1
dE�M��E�� . �A5�

However, note that if dE� =0, �0=�1, and tr����0�0
��0�=1.

This implies that M��E��=1, and so

tr����1�0
��1� = e−dE�

T
�E�

−1
dE� . �A6�
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