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We consider a physical system in which the description of states and measurements follow the usual
quantum mechanical rules. We also assume that the dynamics is linear, but may not be fully quantum �i.e.,
unitary�. We show that in such a physical system, certain complementary evolutions, namely, cloning and
deleting operations that give a better fidelity than quantum mechanically allowed ones, in one �inaccessible�
region, lead to signaling to a far-apart �accessible� region. To show such signaling, one requires certain
two-party quantum correlated states shared between the two regions. Subsequent measurements are performed
only in the accessible part to detect such phenomenon.
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The existence of quantum correlation in states shared be-
tween distant partners has several important fundamental and
practical impacts �1�. One can obtain violation of local real-
ism by using states with quantum correlation �2�. On the
other hand, one may use states with quantum correlation in
nonclassical tasks like cryptography �3�, dense coding �4�,
teleportation �5�, etc.

In this paper, we show that quantum correlations can be
used to check for or to provide bounds on possible non-
quantum effects. Non-quantum effects have generally been
divided into two categories: Ones that are nonquantum in the
“statics” part of the theory, and ones that are so in the “dy-
namics” part �see, e.g., �6��. unitary dynamics�. We consider
a physical system in which �i� the states ����, ���, etc.� are
elements of a complex Hilbert space, just as in quantum
mechanics, and �ii� measurements are also assumed just
as in quantum mechanics. The duo is said to form the “stat-
ics” part of the theory. We further assume that �iii� the
dynamics is linear, i.e., ���→ ���� and ���→ ���� implies
a���+b���→a����+b����, for complex a and b. Note that
�i�, �ii�, and �iii�, by themselves, do not imply a quantum
dynamics �i.e., the usual unitary dynamics�. For our pur-
poses, it is important to note that �i� and �ii� lead to quantum
correlation in states of separated parties. We show that in
such a physical system, certain complementary families of
non-quantum evolutions give rise to signaling. This gives us
an independent basis to believe in the quantum dynamics.

In checking for the effect, we will use cloning �7� and
deleting �8� operations as our tools. It was shown in �9� that
exact cloning or exact deleting results in a change of von
Neumann entropy �10�. Within the quantum formalism, al-
though exact cloning and deleting are not possible, approxi-
mate versions of such operations are possible �see, e.g.,
�11,12��. To check the effect, one needs to prepare certain
bipartite states, which we show to be available within the
reach of current technology. Importantly, we do not need to
directly observe �perform measurements in� the region
whose dynamics is being probed. We suppose that one part
�B� of the bipartite state is lost to the “environment.” The
other part �A� remains in the “accessible” part of the experi-
ment �see Fig. 2�. In this paper we show, that in our physical
system �i.e., one that follows �i�, �ii�, and �iii��, whenever the

evolution in the environment �B�, is such that a cloning or
deleting happens with a better fidelity than the best quantum-
mechanical cloning or deleting machine, there occurs a
change of entropy in the accessible part �A� of the experi-
ment. This change of entropy can be detected in the A part,
and therefore results in a signaling to the A part. Note here
that if we believe that signaling is not possible �13�, then our
results prove that cloning and deleting �which are better than
what can be done by the best quantum mechanical machines�
are not possible, without assuming the whole quantum dy-
namics. The reason for the choice of the two operations of
cloning and deleting is that it has been generally argued that
they are in a sense complementary. Thus, it is conceivable
that at least one of such non-quantum-mechanical operations
or “nearby” ones are possible to occur, if at all, in the envi-
ronment.

Cloning and deleting. Let us first briefly consider the no-
tions of cloning and deleting. In cloning, we want to have the
evolution ����0�→ ���, ����0�→ ���, where �0� is a fixed
“blank” state in which the cloned state is to appear. In the
exact case, we want to have ���= ������, and ���= ������.
This, however, is not possible under a quantum-mechanical
evolution, when ��� and ��� are not orthogonal �7,14�. Con-
sequently, one may want to have the best cloning machine,
i.e., one that takes ��� as close as possible to ������, and at
the same time takes ��� as close as possible to ������.
The best cloning machine is one which maximizes the quan-
tity Fclone= ����������+ ���������� /2 �11�. In the case of de-
leting, we want to have the complementary evolution
������→ ��d� and ������→ ��d� �in a closed system�, where
in the perfect case, we want to have ��d�= ����0� and ��d�
= ����0�, �0� being a fixed state from which information
�whether it was ��� or ���� has been deleted. Again, this
exact case is not possible under a quantum-mechanical op-
eration, when ��� and ��� are nonorthogonal �8,12�. There-
fore, just as in the case of cloning, one may again want to
obtain ��d� as close as possible to ����0�, and at the same
time ��d� as close as possible to ����0�. The best deleting
machine is one that, for some fixed �0�, maximizes the quan-
tity Fdelete= �����0���d�+ ����0���d�� /2 �cf. �12��.

We now show that
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Theorem 1: In a physical system that follows (i), (ii), and
(iii), for two nonorthogonal states ���� and ����, cloning
evolutions that allow fidelities that are better than the best
quantum mechanically attainable fidelity Fclone, will result in
signaling.

Before proving the theorem, let us note that in �15� �cf.
�16��, it was shown that a better fidelity than the best
quantum-mechanical fidelity leads to signaling. In addition,
Ref. �17� shows that exact deleting results in signaling. How-
ever, in both these cases, they considered universal cloning
and deleting. Such cloning and deleting are invalidated by
linearity. Here, however, we consider cloning and deleting of
two nonorthogonal states, which cannot be ruled out by lin-
earity. No cloning and no deleting of two nonorthogonal
states can be proven by using unitarity, a more stricter re-
striction than just linearity. It has been widely regarded that
violation of linearity will lead to signaling �cf. �18��. Our
results show that important linear operations can also lead to
signaling.

Proof: Let us consider symmetric cloning. However, all
the considerations carry over, with a little more algebra, to
the asymmetric case also. Suppose that for the input states
��� and ���, the best quantum mechanically attainable clon-
ing fidelity is Fclone, and is attained with the states ��� and
���. Suppose also that there exists a �non-quantum� cloning
machine that produces the states ���� and ����, giving a
better fidelity Fclone� = �����������+ ����������� /2, that is
�Fclone.

In Fig. 1, we give a pictorial representation of the states
������, ������, ���, ���, ����, and ����. Note that in general,
e.g. ��� and ��� will not be in the same plane as ������ and
������. Consider the cone formed by ��� and ���. The angle
�modulus of inner product� between these states must be the
same as that between ����0� and ����0�. This is due to the fact
that unitary evolution preserves the inner product of evolved
states. Thus, ����0� and ����0� must lie on the same cone as
that of ��� and ���. Now, whenever ��� and ��� are nonor-
thogonal, we have ��������������� �����0�����0��= ��������
This is why the cone of ������ and ������ is drawn to be
wider than the cone of ��� and ��� in Fig. 1.

As Fclone� �Fclone, the cone formed by ���� and ���� will
be wider than that formed by ��� and ��� �see Fig. 1�. Since
we consider symmetric cloning, all three cones will be co-
axial. Thus, we have ����������� ��������. However,
��������= �����0�����0��, since ��� and ��� are produced from
����0� and ����0� by quantum-mechanical operations. There-
fore, we have that ����������� �����0�����0��, a clear depar-

ture from quantum-mechanical evolutions �since the inner
product must be preserved in quantum-mechanical evolu-
tions�. Whenever this relation holds, the von Neumann en-
tropy of �out= ���������+ ��������� /2 is greater than the
von Neumann entropy of �in= �����0�����0�+ ����0�����0�� /2.

Consider now the bipartite state

��� =
1
�2

��0�A�����0��B + �1�A�����0��B� , �1�

where �0��1�=0. Suppose that a super-quantum-mechanical
cloning evolution, attaining Fclone� for the states ��� and ���,
acts on part B of the state ���, so that the state ��� evolves
into ��1�= ��0�A����B+ �1�A����B� /�2. Note that we have ex-
plicitly used linearity �item �iii��, in obtaining the state ��1�.
The local density matrices of the B part of the states ��� and
��1� are �in and �out. We therefore have a difference in von
Neumann entropy of the input and output states in the B part.
Since ��� and ��1� are pure states, this difference can be
exactly verified in the A parts. Therefore, consequent upon
action of any member of the family of super-quantum clon-
ing evolutions �the family is generated by pairs of nonor-
thogonal states� in the B part, an increase in entropy can be
observed in the A part. �

Similar reasoning holds for the case of deleting also. Only
Fig. 1 must be replaced by one in which an outer cone is
formed by ��d� and ��d� and an inner one formed by ����0�
and ����0�. The middle cone will again be formed by ��d��
and ��d��. Here ��d� and ��d� will represent the states that are
obtained from ������ and ������, by the best quantum-
mechanical deleting operation, assumed to be Fdelete. In ad-
dition, the shared bipartite state that must be considered is
����= ��0�A��������B+ �1�A��������B� /�2. In this case, a super-
quantum deleting evolution in the B part, results in a de-
crease of entropy in the A part, so that

Theorem 2: In a physical system that follows (i), (ii), and
(iii), for two nonorthogonal states ���� and ����, deleting
evolutions that allow fidelities that are better than the best
quantum mechanically attainable fidelity Fdelete, will result in
signaling.

We will now show that it is possible to test the effect, by
showing that the states ��� and ���� �used in Theorems 1 and
2 above� can be prepared with current technology. Photons
are as yet the best candidates for quantum communication.
We give our strategy in terms of the polarization degree of
freedom of photons.

The case of cloning. In this case, we require to prepare the
state ��� of Eq. �1�. Let us write it as �1/�2���0�1���2

+ �1�1���2��0�4, where the photon 1 is to go to Alice �A� who
is in the accessible part of the experiment. The photons 2 and
4 are to be sent to the environment, and will not be directly
observed �see Fig. 2�. For nonorthogonal ��� and ���, the first
part ��0����+ �1����� /�2 is a nonmaximally entangled state. It
can, of course, be written in Schmidt decomposition as
a�0���0��+b�1���1��, where a and b are positive numbers with
a2+b2=1. We choose the local axes such that this nonmaxi-
mally entangled state is a�V��H�+b�H��V�= ��� �say�, where
�V� and �H� are, respectively, the vertical and horizontal po-

FIG. 1. A pictorial representation of the states ������, ������,
���, ���, ����, and ����.
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larizations of a photon. This can be prepared by spontaneous
pulsed parametric downconversion �19,20�.

A schematic description of the arrangement is given in
Fig. 2. A pump laser is directed towards a downconversion
crystal. There is then a certain probability of obtaining
the state ��+�= ��V�1�H�2+ �H�1�V�2� /�2 in the modes 1
and 2 �21�. Subsequently, local fitering operations are per-
formed to create the nonmaximally entangled state ���
=a�V�1�H�2+b�H�1�V�2 in modes 1 and 2. �These local filter-
ing operations are not shown in the figure.� After passing
through the crystal, the pulse is reflected back to the crystal
by a delay mirror �see, e.g., �22��. There is again a certain
probability of creation of a pair in the state ��+� in modes 3
and 4. We consider only those cases when both the pairs are
created. Mode 3 is detected and acts as a trigger to indicate
that a photon is actually present in mode 4. The polarization
of the photon in mode 4 is set to vertical by using a polarizer.
Thus, the photon in mode 4 is ultimately in the state �V�, and
this acts as our blank state �0�4 in the total state ���124
= ���12�0�4. Mode 4 and mode 2 �after being reflected by two
mirrors� are directed to a half-silvered mirror, so that mode 4
passes through and mode 2 is reflected. The delay in the
creation of pair 34 is made such that the photons in modes 2
and 4 reach the half-silvered mirror at the same time. Then
these two photons are directed to the environment. The pho-
ton in mode 2 runs towards Alice �A�, and remains in the
accessible part of the experiment.

Here we are using Type II downconversion �23�. In the
Type I case, the path degrees of freedom are used for en-
tanglement generation. This is a problem here, as we want
the B part photons to ultimately be directed towards a single
direction. Note here that we have not used entanglement
swapping �24,25� to prepare our entangled state. Here, pho-
ton 3 acts as a trigger for guaranteeing the existence of pho-
ton 4, while the photon 1 will subsequently be detected by
Alice �and will act as a trigger for the state created in modes
12�, and we consider only those runs of the experiment, in
which both the trigger photon 3 and photon 1 are detected.

The case of deleting. In this case, we must prepare the
state ����. This can be obtained after local filtering operations
on a Greenberger-Horne-Zeilinger �GHZ� state �26�
��0�A��0��0��B+ �1�A��1��1��B� /�2, after which the first part re-
mains in the accessible part �A� of the experiment and the
second and third parts are aligned to a single direction �just
as in Fig. 2 in case of cloning� and sent to the environment.

Experimental observation of the GHZ state has been reported
in �27�. However, the experiment relies for its success on
actual observation of all the photons that make up the GHZ
state �plus a trigger photon�. Whereas this is sufficient for
many important purposes, it is not sufficient for us. In our
case, at least two photons are not to be directly observed.
However, in a proposal for preparation for the GHZ state
�28�, the state is prepared without the restriction of having to
actually detect the photons �making up the GHZ�, to know
that a GHZ state is produced. After production of a GHZ by
this proposal, local filtering operations can be carried out to
produce the state ����.

After the photons in the B part are sent to the environ-
ment, Alice makes measurements on her photon to determine
the von Neumann entropy of her state. The von Neumann
entropy can conveniently be found by measurement results
from outcomes in a Mach-Zehnder interferometer, to which
the photon in mode 1 can be directed into. More economical
methods, although requiring measurements over many cop-
ies, can be found in Refs. �29�. The von Neumann entropy of
the A part of the state ���, or the 1 part of the state ���12�V�4
is H�a2�=−a2 log2 a2−b2 log2 b2 Similarly, let the von Neu-
mann entropy of the A part of the state ���� be H�a�2�. As we
have seen in Theorem 1 above, any departure from the value
H�a2� in the experiment for cloning, or from the value
H�a�2� in the experiment for deleting, of the von Neumann
entropy of the polarization degrees of freedom of the photon
1, as detected by Alice from her experimental results, will
indicate a signaling. This in turn indicates that there are non-
quantum-mechanical operations that have acted on the
modes 2 and 4, that were directed to the environment.

The same experiment can be carried on for different val-
ues of a, a�. The values of a, a� can be varied by varying the
parameters of the local filtering apparatus. Each set of
	a ,a�
, checks for a duo of non-quantum-mechanical evolu-
tions, one from super-quantum-mechanical cloning, and the
other from super-quantum-mechanical deleting. Thus, we
can check for two complementary families of possible non-
quantum-mechanical evolutions on the modes 2 and 4. In an
actual experiment, there will be some noise. The results ob-
tained from such experiments can be used to put bounds on
the power of possible non-quantum-mechanical evolutions in
the environment.

In principle, the “environment” can be some extreme situ-
ations, e.g., an evaporating black hole, where conditions may
be far too extreme for the laws established in the usual labo-
ratories to be applicable �see, e.g., �30�, cf. �31��. However,
just as in the recent proposal �30�, the way to send the probes
�the photons 2 and 4 in our case� to an evaporating black
hole, remains a problem. However, let us mention that we
consider a bipartite state instead of the three-party state of
�30�. Another conceivable situation is where a person claims
to be able to perform non-quantum operations, but denies
direct access to his/her laboratory. Our procedure can then be
used to check for his/her claim. However the main impetus,
in this paper �of the Theorems 1 and 2�, is to have an inde-
pendent reason for believing in the quantum dynamics.

In conclusion, we have shown that in a physical system
that follows �i�, �ii�, and �iii�, a cloning operation acting in a

FIG. 2. Schematic description of the arrangement in the case of
cloning. The down conversion crystal is denoted as a box, and delay
mirror, mirrors, and half-silvered mirror are denoted, respectively,
by DM, M, and HSM. See text for details.
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region B, that leads to a better than quantum-mechanical
fidelity, results in signaling to a far-apart region A. The same
conclusion can be obtained for deleting. The strategy to
check for such signaling does not require to perform mea-
surements in the region B. The two-party states required to

perform the strategy can be prepared with current technol-
ogy. This gives us an independent basis to believe in the
quantum dynamics.
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