Job openings & fellowships Job openings
Select Page
Theses Defenses
November 29, 2007

PhD Thesis Defense MARC MAYMÓ 'Interacció paramètrica no lineal en materials amb nano-estructuració ordenada'

MARC MAYMÓ
PhD Thesis Defense, November 29th, 11:00. ETSEB Campus Nord. Building B3 1st Floor. 'Aula de Teleensenya-
ment'
MARC MAYMÓ
Nano Photonics
Nonlinear photonic structures
ICFO-The Institute of Photonic Sciences
Second order nonlinear interactions are, among, the most relevant nonlinear interactions between light and matter when one considers their applications. Such interactions are only efficient in noncentrosymmetric materials and materials or material structures that provide a phase matching mechanism. This is the case, for instance, in highly anisotropic crystals. However such anisotropy sets important limitations to the application scope of these materials.

In the last decades, a large variety of inorganic crystals, such as, for instance, LN or KTP, have been used in optics devices. However, these inorganic materials have several drawbacks like their cost, processing difficulties and limitations to their flexibility and capability to hold new properties. Organic molecules may provide some alternatives, but the difficulties in getting a noncentrosymmetric organic crystal, large enough to hold an efficient nonlinear interaction, has restricted their applicability. Because the high nonlinearity of some organic molecules, one may consider surface nonlinear interaction as a good nonlinear mechanism for these molecules. Although the efficiency of surface interaction is low, when many of this surfaces interactions are coherently added, the whole process can be efficient.

Photonic crystals have the capability of controlling the propagation and generation of light. Such control is larger in the neighbourhood of a forbidden band. In fact, at the edge of the band it is possible to control the nonlinear interactions. The high number of interfaces present in the photonic crystal structure, where a quadratic nonlinear interaction may occur, and the band edge effects, make it interesting to focus our study into some of such second order nonlinear interaction.

In this thesis, we present experimental and theoretical results related to different second order nonlinear interactions in the framework of nonlinear colloidal photonic crystals, and nonlinear opals. For the colloidal crystals we mostly consider second order nonlinear processes, and the surface origin of these interactions is demonstrated. In the case of opals we focus our work on the effects that the group velocity anomalies present in the high bands of the photonic crystals, and show how we can take advantage of them for a nonlinear interaction enhancement.

Using solid face methods, we have been able to covalently link a large amount of nonlinear organic molecules to the surfaces of polystyrene nanospheres. These latex spheres have the capability to self organise in a centrosymmetric lattice. We experimentally demonstrate that, given the photonic crystal properties of this material and the possibility of holding surface nonlinear interactions in the interfaces of the nanospheres, efficiencies up to 6 orders of magnitude larger than the ones obtained in the past, can be achieved.

An introduction to relevant aspects of photonic crystals and nonlinear optics can be found in chapter I. In chapter II second order nonlinear interactions in photonic crystals are described. We explain how to fabricate these colloidal nonlinear crystals, and then experimentally demonstrate that second harmonic generation in the framework of colloidal photonic crystals is a surface phenomenon. In chapter III, counter-propagating sum frequency generation and third harmonic generation are discussed. In chapter IV, we experimentally demonstrate that, using an opal made of nonlinear polystyrene spheres, the enhancement of second harmonic generation is possible if one takes advantage of the group velocity anomalies presents on the edges of flat bands that are opened at higher frequencies. The main conclusions of the work are summarized in the last chapter.


Thursday, 29th of November, 11:00h. ETSEB Campus Nord. Building B3 1st Floor. 'Aula de Teleensenyament'

Thesis Advisor: Prof. Jordi Martorell
Theses Defenses
November 29, 2007

PhD Thesis Defense MARC MAYMÓ 'Interacció paramètrica no lineal en materials amb nano-estructuració ordenada'

MARC MAYMÓ
PhD Thesis Defense, November 29th, 11:00. ETSEB Campus Nord. Building B3 1st Floor. 'Aula de Teleensenya-
ment'
MARC MAYMÓ
Nano Photonics
Nonlinear photonic structures
ICFO-The Institute of Photonic Sciences
Second order nonlinear interactions are, among, the most relevant nonlinear interactions between light and matter when one considers their applications. Such interactions are only efficient in noncentrosymmetric materials and materials or material structures that provide a phase matching mechanism. This is the case, for instance, in highly anisotropic crystals. However such anisotropy sets important limitations to the application scope of these materials.

In the last decades, a large variety of inorganic crystals, such as, for instance, LN or KTP, have been used in optics devices. However, these inorganic materials have several drawbacks like their cost, processing difficulties and limitations to their flexibility and capability to hold new properties. Organic molecules may provide some alternatives, but the difficulties in getting a noncentrosymmetric organic crystal, large enough to hold an efficient nonlinear interaction, has restricted their applicability. Because the high nonlinearity of some organic molecules, one may consider surface nonlinear interaction as a good nonlinear mechanism for these molecules. Although the efficiency of surface interaction is low, when many of this surfaces interactions are coherently added, the whole process can be efficient.

Photonic crystals have the capability of controlling the propagation and generation of light. Such control is larger in the neighbourhood of a forbidden band. In fact, at the edge of the band it is possible to control the nonlinear interactions. The high number of interfaces present in the photonic crystal structure, where a quadratic nonlinear interaction may occur, and the band edge effects, make it interesting to focus our study into some of such second order nonlinear interaction.

In this thesis, we present experimental and theoretical results related to different second order nonlinear interactions in the framework of nonlinear colloidal photonic crystals, and nonlinear opals. For the colloidal crystals we mostly consider second order nonlinear processes, and the surface origin of these interactions is demonstrated. In the case of opals we focus our work on the effects that the group velocity anomalies present in the high bands of the photonic crystals, and show how we can take advantage of them for a nonlinear interaction enhancement.

Using solid face methods, we have been able to covalently link a large amount of nonlinear organic molecules to the surfaces of polystyrene nanospheres. These latex spheres have the capability to self organise in a centrosymmetric lattice. We experimentally demonstrate that, given the photonic crystal properties of this material and the possibility of holding surface nonlinear interactions in the interfaces of the nanospheres, efficiencies up to 6 orders of magnitude larger than the ones obtained in the past, can be achieved.

An introduction to relevant aspects of photonic crystals and nonlinear optics can be found in chapter I. In chapter II second order nonlinear interactions in photonic crystals are described. We explain how to fabricate these colloidal nonlinear crystals, and then experimentally demonstrate that second harmonic generation in the framework of colloidal photonic crystals is a surface phenomenon. In chapter III, counter-propagating sum frequency generation and third harmonic generation are discussed. In chapter IV, we experimentally demonstrate that, using an opal made of nonlinear polystyrene spheres, the enhancement of second harmonic generation is possible if one takes advantage of the group velocity anomalies presents on the edges of flat bands that are opened at higher frequencies. The main conclusions of the work are summarized in the last chapter.


Thursday, 29th of November, 11:00h. ETSEB Campus Nord. Building B3 1st Floor. 'Aula de Teleensenyament'

Thesis Advisor: Prof. Jordi Martorell

All Theses Defenses